POTENTIALS OF KENAF FIBRE IN BIO-COMPOSITE PRODUCTION: A REVIEW

Authors

  • Ogunbode Ezekiel Babatunde Department of Structures and Materials, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
  • Jamaludin Mohamad Yatim Department of Structures and Materials, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
  • Mohd Yunus Ishak Department of Structures and Materials, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
  • Razavi Masoud Department of Structures and Materials, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
  • Razavi Meisam Department of Structures and Materials, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v77.6304

Keywords:

Cellulose, fibre matrix interface, hydrophilic, hydrophobic, kenaf fibre, natural fibre composite, surface modification

Abstract

Kenaf plants are blessing to mankind. Its high carbon dioxide (CO2) assimilation rate and ability to clean the air by consuming large quantities of CO2 and also absorbs nitrogen and phosphorous from the soil, which are the main cause of the greenhouse effect has made kenaf significant from the standpoint of environmental friendliness. Today kenaf fibres are envisioned as an alternative medium to replacing conventional materials or synthetic fibres as reinforcement in composites. The low cost, no health risk, low density, high strength and modulus, and availability of kenaf fibres in some countries has made it befitting for use in composites production. This review presents the potential and recent developments of kenaf fibre and its composites. Recommendations for future work are also made.

References

Akil, H. M., M. F. Omar, A. A. M. Mazuki, S. Safiee, Z. A. M. Ishak and A. Abu Bakar. 2011. Kenaf Fiber Reinforced Composites: A Review. Materials & Design. 32(8-9): 4107-4121.

Amar, K., M. Manjusri, and T. D. Lawrence. 2005. Natural Fibers, Biopolymers and Biocomposites. London: CRC Press, Tailor & Francis.

Ashori, A., J. Harun, W. D. Raverty and M. N. M. Yusoff. 2006. Chemical and Morphological Characteristics of Malaysian Cultivated Kenaf (Hibiscus cannabinus) Fiber. Polymer-Plastics Technology and Engineering. 45(1): 131-134.

Bukenya-Ziraba, R. and K. Bonsu. 2004. Solanum macrocarpon L. PROTA. 2.

Holbery, J. and D. Houston. 2006. Natural-fiber-reinforced Polymer Composites in Automotive Applications. Jom. 58(11): 80-86

Webber III, C. L., H. L. Bhardwaj and V. K. Bledsoe. 2002. Kenaf Production: Fiber, Feed, and Seed. Trends in New Crops and New Uses. 327-339.

Cheng, Z. 2001. Kenaf Research, Products and Applications in Japan. Plant Fibers Prod. 23(3): 16-24.

Sameshima, K., A. Touge and Y. Ohtani. 2000. Improvement of Kenaf Core Oil Absorption Property by Heat Treatment at 200–500 C. In Proceedings of the 3rd Annual American Kenaf Society Conference, Corpus Christi, TX, February, 2000 0c

Abe, K., and Y. Ozaki. 1998. Comparison of Useful Terrestrial and Aquatic Plant Species for Removal of Nitrogen and Phosphorus from Domestic Wastewater. Soil Science and Plant Nutrition. 44(4): 599-607.

Amaducci, S., M. Amaducci, R. Benati and G. Venturi. 2000. Crop Yield and Quality Parameters of Four Annual Fibre Crops (Hemp, Kenaf, Maize And Sorghum) in the North of Italy. Industrial Crops and Products. 11(2): 179-186.

Webber III, C. L., and V. K. Bledsoe. 2002. Kenaf Yield Components and Plant Composition. Trends in New Crops And New Uses. 348-357.

Ogbonnaya, C. I., H. Roy-Macauley, M. C. Nwalozie D. J. M. Annerose. 1997. Physical and Histochemical Properties of Kenaf (Hibiscus Cannabinus L.) Grown Under Water Deficit on a Sandy Soil. Industrial Crops and Products. 7(1): 9-18.

Sellers, T. 1999. Kenaf Properties, Processing and Products.

Lee, S. A. and M. A. Eiteman. 2001. Ground Kenaf Core as a Filtration Aid. Industrial Crops and Products. 13(2): 155-161.

Mazuki, A. A. M., H. M. Akil, S. Safiee, Z. A. M. Ishak and A. A. Bakar. 2011. Degradation of Dynamic Mechanical Properties of Pultruded Kenaf Fiber Reinforced Composites After Immersion in Various Solutions. Composites Part B: Engineering. 42(1): 71-76.

Davoodi, M. M., S. M. Sapuan, D. Ahmad, A. Ali, A. Khalina and M. Jonoobi. 2010. Mechanical Properties of Hybrid Kenaf/Glass Reinforced Epoxy Composite for Passenger Car Bumper Beam. Materials & Design. 31(10): 4927-4932.

Nishimura, N., A. Izumi and K. I. Kuroda. Structural Characterization of Kenaf Lignin: Differences Among Kenaf Varieties. Industrial Crops and Products. 15(2): 115-122.

Morrison Iii, W. H. Akin, D. E. Archibald, R. B. Dodd and P. L. Raymer. 1999. Chemical and Instrumental Characterization of Maturing Kenaf Core and Bast. Industrial Crops and Products. 10(1): 21-34.

Ververis, C., K. Georghiou, N. Christodoulakis, P. Santas and R. Santas. 2004. Fiber Dimensions, Lignin and Cellulose Content of Various Plant Materials and Their Suitability for Paper Production. Industrial Crops and Products. 19(3): 245-254.

Tsoumis, G. 1991. Science and Technology of Wood. Structure, Properties, Utilization. Van Nostrand Reinhold.

Thi Bach, T. L., H. Keko and I. Kenji. 2003. Structural Characteristics of Cell Walls of Kenaf (Hibiscus Cannabinus L.) And Fixation Of Carbon Dioxide. J. Wood Sci. 49: 255-261.

Rouison, D., M. Sain and M. Couturier. 2004. Resin Transfer Molding of Natural Fiber Reinforced Composites: Cure Simulation. Composites Science and Technology. 64(5): 629-644.

Mohamed, A., H. Bhardwaj, A. Hamama and C. Webber Iii. 1995. Chemical Composition of Kenaf (Hibiscus Cannabinus L.) Seed Oil. Industrial Crops and Products. 4(3): 157-165.

Chawla, K. K. 2005. Fibrous Materials. Cambridge University Press.

Cao, Y., S. Sakamoto and K. Goda. 2007. Effects of Heat and Alkali Treatments on Mechanical Properties of Kenaf Fibers. Proceedings of 16th International Conference on Composite Materials, Kyoto Japan. 1-4.

Du, Y., J. Zhang and Y. Xue. 2008. Temperature-duration Effects on Tensile Properties of Kenaf Bast Fiber Bundles. Forest Products Journal. 58(9): 59.

Khalil, H.A. and N. L. Suraya. 2011. Anhydride Modification of Cultivated Kenaf Bast Fibers: Morphological, Spectroscopic and Thermal Studies. BioResources. 6(2): 1121-1135.

Mahjoub, R., J. M. Yatim, A. R. M. Sam and M. Raftari. 2014. Characteristics of Continuous Unidirectional Kenaf Fiber Reinforced Epoxy Composites. Materials & Design. 64: 640-649.

Kim, J. K. and Y. W. Mai. 1993. Interfaces in composites. Materials Science and Technology.

Masirek, R., Z. Kulinski, D. Chionna, E. Piorkowska and M. Pracella. 2007. Composites of Poly (Lâ€Lactide) with Hemp Fibers: Morphology and Thermal and Mechanical Properties. Journal of Applied Polymer Science. 105(1): 255-268.

Graupner, N., A. S. Herrmann and J. Müssig. 2009. Natural and Man-Made Cellulose Fibre-Reinforced Poly(Lactic Acid) (PLA) Composites: An Overview About Mechanical Characteristics and Application Areas. Composites Part A: Applied Science and Manufacturing. 40: (6-7): 810-821.

Mansor, M. R., S. Sapuan, E. Zainudin, A. Nuraini and A. Hambali. 2013. Stiffness Prediction of Hybrid Kenaf/Glass Fiber Reinforced Polypropylene Composites using Rule of Mixtures (ROM) and Rule of Hybrid Mixtures (RoHM). Journal of Polymer Materials. 30(3): 321-334.

Bisanda, E. T. N. and M. P. Ansell. 1992. Properties of Sisal-CNSL Composites. Journal of Materials Science. 27(6): 1690-1700.

Mohanty, A., M. Misra and G. Hinrichsen. 2000. Biofibres, Biodegradable Polymers and Biocomposites: An Overview. Macromolecular Materials and Engineering. 276(1): 1-24.

Pande, H. and D. Roy. 1998. Influence of Fibre Morphology and Chemical Composition on the Papermaking Potential of Kenaf Fibres: A Look at What Attributes Affect Tensile Strength. Pulp & paper Canada. 99(11): 31-34.

Magurno, A. 1999. Vegetable Fibres In Automotive Interior Components. Die Angewandte Makromolekulare Chemie. 272(1): 99-107.

Ramaswamy, G. N., S. Craft and L. Wartelle. 1995. Uniformity and Softness of Kenaf Fibers for Textile Products. Textile Research Journal. 65(12): 765-770.

Kawai, S. O., Y. Okudaira and M. Zhang. 2000. Manufacture of Oriented ï¬berboard from Kenaf Bast ï¬bers and Its Application to the Composite Panel. Proc Int’l kenaf Symp. 144-148.

Wolcott, M. and P. Smith. 2004. Opportunities and Challenges for Wood-Plastic Composites in Structural Applications. Proceedings of Progress in Woodfibre-Plastic Composites-2004 Toronto, ON.

Aji, I., S. Sapuan, E. Zainudin and K. Abdan. 2009. Kenaf Fibres as Reinforcement for Polymeric Composites: A Review. International Journal of Mechanical and Materials Engineering. 4(3): 239-248.

Cristaldi, G., A. Latteri, G. Recca and G. Cicala. 2010. Composites Based on Natural Fibre Fabrics. Woven Fabric Engineering. 317-342.

Almn, A. 2006. Fibers for Strengthering of Timber Structures. Lulea University of Technology.

Shi, J., S. Q. Shi, H. M. Barnes, M. Horstemeyer, J. Wang and E. M. B. Hassan. 2011. Kenaf Bast Fibers—Part I: Hermetical Alkali Digestion. International Journal of Polymer Science.

Mahjoub, R., J. M. Yatim, A. R. M. Mohd Sam and S. H. Hashemi. 2014. Tensile Properties of Kenaf Fiber Due to Various Conditions of Chemical Fiber Surface Modifications. Construction and Building Materials. 55: 103-113.

Downloads

Published

2015-11-17

How to Cite

POTENTIALS OF KENAF FIBRE IN BIO-COMPOSITE PRODUCTION: A REVIEW. (2015). Jurnal Teknologi (Sciences & Engineering), 77(12). https://doi.org/10.11113/jt.v77.6304