PREDICTION OF UNCONFINED COMPRESSIVE STRENGTH OF ROCKS: A REVIEW PAPER

Authors

  • Ehsan Momeni Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Ramli Nazir Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Danial Jahed Armaghani Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Mohd For Mohd Amin Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Edy Tonnizam Mohamad Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v77.6393

Keywords:

Unconfined compressive strength, Brazilian tensile strength test, point load index test, Schmidt hammer, ultrasonic velocity, artificial intelligence

Abstract

Unconfined compressive strength (UCS) of rocks is a crucial parameter in designing geotechnical structures. Owing to difficulties in obtaining proper samples for UCS test as well as the point that conducting UCS is relatively expensive, the use of indirect methods for UCS estimation has drawn considerable attentions. This review paper is aimed to briefly highlight different proposed predictive models of UCS. In this regard, nearly 85 predictive models of UCS are listed in the paper which provides a good reference and database for geotechnical readers. The highlighted models are divided into two main sections. In the first section, UCS correlations with Brazilian tensile strength test, point load index test (Is(50)), Schmidt hammer and ultrasonic velocity tests are highlighted. In the second section, recently proposed artificial intelligence-based predictive models of UCS are underlined. Apart from that, using available data (106 rock specimens), which were previously published by authors, a new correlation between UCS and Is(50) is developed which can be useful for assessing the UCS of tropical rocks. Overall, although the paper suggests conducting direct UCS test for important projects, based on the region and type of rocks, employing the highlighted predictive models for assessing the UCS of rock can be advantageous

References

ISRM. 2007. The Complete ISRM Suggested Methods For Rock Characterization, Testing And Monitoring: 1974–2006. in: R. Ulusay, J.A. Hudson (Eds.). Suggested Methods Prepared by the Commission on Testing Methods. International Society for Rock Mechanics. ISRM Turkish National Group, Ankara, Turkey.

R Nazir, E. Momeni, D. Jahed Armaghani and M. F. Mohd Amin. 2013. Correlation Between Unconfined Compressive Strength And Indirect Tensile Strength Of Limestone Rock Samples. Electr J GeotechEng . 18 (I): 1737–1746.

B.H.G Brady and E.T. Brown. 2004. Rock Mechanics For Underground Mining. Kluwer Academic Publishers. New York. 645.

P.R. Sheorey. 1997. Empirical Rock Failure Criteria. A.A. Balkema, Rotterdam .176.

Edy Tonnizam Mohamad ,Jahed Armaghani, D. and E. Momeni. S.V. Alavi Nehzhad Khalil Abad .2014. Prediction on Unconfined Compressive Strength of Soft Rocks: A PSO-based ANN Approach. Bulletin of Engineering Geology and Environmental. 10.1007/s10064-014-0638-0.

E. Momeni, D. Jahed Armaghani, M. Hajihassani and M. F. Mohd Amin. 2015. Prediction of Uniaxial Compressive Strength of Rock Samples using Hybrid Particle Swarm Optimization-based Artificial Neural Networks. Measurement. 60: 50-63.

D.V. D'Andrea, R.L. Fisher and D.E. Fogelson. 1964. Prediction Of Compression Strength From Other Rock Properties. Colorado Sch. Min. Q. 59(4B): 623–640.

R Nazir, E. Momeni, D. JahedArmaghani and M. F. Mohd Amin. 2013. 2013 Prediction of Unconfined Compressive Strength of Limestone Rock Samples Using L-Type Schmidt Hammer. Electronic Journal of Geotechnical Engineering. 18 (I): 1767-1775.

R Nazir, E. Momeni, D. Jahed Armaghani and H. Mazir. 2015. Application of Artificial Neural Network for Predicting Shaft and Tip Resistance of Concrete Piles. Earth Sciences Research Journal. 19(1): 85-93.

R Nazir, E. Momeni, D. Jahed Armaghani and H. Mazir. 2015. Prediction of Pile Bearing Capacity using A Hybrid Genetic Algorithm-Based ANN. Measurements. 57: 122-131.

M.A. Shahin, H.R. Maier and M.B. Jaksa. 2002. Predicting Settlement Of Shallow Foundations Using Neural Network. Journal of Geotechnical and Geoenirnmental Engineering. 128(9): 785 - 793.

J.H. Garret. 1994. Where And Why Artificial Neural Networks Are Applicable In Civil Engineering. J. Comput. Civ. Eng. 8: 129–130.

A.P. Engelbrecht. 2007. Introduction To Computational Intelligence. in: Computational Intelligence: An Introduction. Second ed. John Wiley & Sons. Ltd Chichester, UK.

S. Kahraman, M. Fener and E. Kozman. 2012. Predicting the Compressive and Tensile Strength of Rocks from Indentation Hardness Index. Journal of the Southern African Institute of Mining and Metallurgy. 112(5): 331-339.

R. Farah. 2011. Correlations Between Index Properties and Unconfined Compressive Strength of Weathered Ocala Limestone. UNF Theses and Dissertations. 142.

R. Altindag, and A. Guney. 2010. Predicting the Relationships between Brittleness and Mechanical Properties (UCS, TS and SH) of Rocks. Scientific Research and Essays. 5(16): 2107 – 2118.

C. Gokceoglu, K. Zorlu. 2004. A Fuzzy Model To Predict The Unconfined Compressive Strength And Modulus Of Elasticity Of A Problematic Rock. EngApplArtifIntell. 17: 61–72.

K. Karaman, F. Cihangir, B. Ercikdi, A. Kesimal, S. Demirel. 2015. Utilization Of The Brazilian Test For Estimating The Uniaxial Compressive Strength And Shear Strength Parameters. Journal of the Southern African Institute of Mining and Metallurgy. 115(3): 185-192.

M. Tahir, N. Mohammad, F. Din. 2011. Strength Parameters And Their Inter-Relationship For Limestone Of Cherat And Kohat Areas Of Khyber Pakhtunkhwa. Journal of Himalayan Earth Sciences. 44( 2): 45–51.

A. TuÄŸrul, I. H. Zarif. 1999. Correlation Of Mineralogical And Textural Characteristics With Engineering Properties Of Selected Granitic Rocks From Turkey. Engineering Geology. 51(4): 303-317.

E. Broch, J. A. Franklin. 1972. Point-Load Strength Test. Int. J. Rock Mech. Min. Sci. 9: 241–246.

Z. T. Bieniawski. 1975. Point Load Test In Geotechnical Practice. Eng. Geol. 9(1): 1–11.

D. K. Ghosh, M. Srivastava. 1991. Point-Load Strength: An Index For Classification Of Rock Material. Bull IntAssocEng Geol. 44: 27–33.

H. J. Smith. 1997. The Point Load Test For Weak Rock In Dredging Applications. Int J Rock Mech Min Sci. 34(3): 295e1–295e13.

S. Kahraman. 2001. Evaluation Of Simple Methods For Assessing The Uniaxial Compressive Strength Of Rock. Int J Rock Mech Min Sci. 38: 981–994.

S. Sulukcu, R. Ulusay. 2001. Evaluation Of The Block Punch Index Test With Particular Reference To The Size Effect, Failure Mechanism And Its Effectiveness In Predicting Rock Strength. Int J Rock Mech Min Sci. 38:1091–1111.

G. Tsiambaos, N. Sabatakakis. 2004. Considerations On Strength Of Intact Sedimentary Rocks. EngGeol. 72: 261–273.

S. Kahraman, O. Gunaydin, M. Fener. 2005. The Effect Of Porosity On The Relation Between Uniaxial Compressive Strength And Point Load Index. Int J Rock Mech Min Sci. 42: 584–589.

A. Basu, A. Aydin. 2006. Predicting Uniaxial Compressive Strength By Point Load Test: Significance Of Cone Penetration. Rock Mech Rock Eng. 39: 483–490.

D. S. Agustawijaya. 2007. The Uniaxial Compressive Strength Of Soft Rock. Civil EngDimen. 9: 9–14.

I. Yilmaz, A. G. Yuksek. 2008. An Example Of Artificial Neural Network (ANN) Application For Indirect Estimation Of Rock Parameters. Rock Mech Rock Eng. 41(5): 781–795.

K. Diamantis, E. Gartzos, G. Migiros. 2009. Study On Uniaxial Compressive Strength, Point Load Strength Index, Dynamic And Physical Properties Of Serpentinites From Central Greece: Test Results And Empirical Relations. Eng Geol. 108: 199–207.

M. Kohno, H. Maeda. 2012. Relationship Between Point Load Strength Index And Uniaxial Compressive Strength Of Hydrothermally Altered Soft Rocks. Int J Rock Mech Min Sci. 50: 147–157.

D. A. Mishra, A. Basu .2012. Use Of The Block Punch Test To Predict The Compressive And Tensile Strengths Of Rocks. Int J Rock Mech Min Sci. 51:119–127.

V. K. Singh, D. P. Singh. 1993. Correlation Between Point Load Index And Compressive Strength For Quartzite Rocks. Geotechnical and geological Engineering. 11(4): 269-272.

A. Basu, M. Kamran. 2010. Point Load Test On Schistose Rocks And Its Applicability In Predicting Uniaxial Compressive Strength. Int. J. Rock Mech Min. Sci. 47: 823–828.

M. Fener, S. Kahraman, A.Bilgil, O. Gunaydin. 2005. A Comparative Evaluation Of Indirect Methods To Estimate The Compressive Strength Of Rocks. Rock Mech. Rock. Eng. 38 (4): 329–343.

A. Basu. 2012. Mechanical Characterization Of Schistose Rocks. Eurock 2012—The ISRM International Symposium, 28–30 May, Stockholm, Sweden.

D. Li, , L.N.Y. Wong. 2013. Reply to Comment by SaffetYagiz on “Point Load Test on Meta-Sedimentary Rocks and Correlations to UCS and BTS†by DiyuanLi and Louis Ngai Yuen Wong. Rock Mechanics and Rock Engineering. 46 : 913–915.

S. Kahraman. 2014. The Determination Of Uniaxial Compressive Strength From Point Load Strength For Pyroclastic Rocks. Engineering Geology. 170: 33-42.

K. T. Chou, R. H. C. Wong. 1996. Uniaxial Compressive Strength And Point Load Strength. Int. J. Rock Mech. Min. Sci. 33: 183–188.

A. Kilic, A. Teymen. 2008. Determination Of Mechanical Properties Of Rocks Using Simple Methods. Bull. Eng. Geol. Environ. 67: 237–244.

I. Cobanoglu, S. Celik. 2008. Estimation Of Uniaxial Compressive Strength From Point Load Strength, Schmidt Hardness And P-Wave Velocity. Bull. Eng. Geol. Environ. 67: 491–498.

E. Yasar, Y. Erdogan. 2004. Correlating Sound Velocity With The Density Compressive Strength And Young’s Modulus Of Carbonate Rocks. Int. J. Rock Mech. Min. Sci. 41: 871–875.

C.I. Sachpazis. 1990. Correlating Schmidt Hardness With Compressive Strength And Young’s Modulus Of Carbonate Rocks. Bull. Int. Assoc. Eng. Geol. 42 : 75– 83.

J.E. O’ Rourke. 1989. Rock Index Properties For Geoengineering In Underground Development. Min. Eng. 106– 110.

R.N. Singh, , F.P. Hassani, and P.A. S. Elkington. 1983. The Application Of Strength And Deformation Index Testing To The Stability Assessment Of Coal Measures Excavations. Proc. 24th US Symp. On Rock Mech. Texas A and M Univ. AEG, Balkema, Rotterdam. 599–609.

A.K. Ghose, and S. Chakraborti. 1986. Empirical Strength Indices Of Indian Coals—An Investigation. Proc. 27th US Symp. on Rock Mech. Balkema, Rotterdam. 59– 61.

S. Xu, P. Grasso, and A. Mahtab. 1990. Use Of Schmidt Hammer For Estimating Mechanical Properties Of Weak Rock. Proc. 6th International IAEG Congress. 1. Balkema, Rotterdam : 511 –519.

R.E. Aufmuth. 1973. A Systematic Determination Of Engineering Criteria For Rocks. Bull. Assoc. Eng. Geol. 11: 235– 245.

J.S. Cargill, and A. Shakoor. 1990. Evaluation Of Empirical Methods For Measuring The Uniaxial Compressive Strength Of Rock. Int J Rock Mech Min Sci&GeomechAbstr. 27:495-503.

K.Y. Haramy, and M.J. DeMarco. 1985. Use of Schmidt hammer for rock and coal testing. Proc. 26th US Symp. on Rock Mech. 26–28 June, Rapid City. Balkema, Rotterdam : 549– 555.

M. Yurdakul, H. Ceylan, H. Akdas. 2011. A Predictive Model For Uniaxial Compressive Strength Of Carbonate Rocks From Schmidt Hardness. Proc. 45th US Rock Mechanics / Geomechanics Symposium held in San Francisco, CA, June 26–29. ARMA 11-533.

I. Yilmaz, and H. Sendir. 2002. Correlation Of Schmidt Hardness With Unconfined Compressivestrength And Young's Modulus In Gypsum From Sivas (Turkey). Eng. Geol. 66: 211–219.

B. Minaeian and K.Ahangari. 2013. Estimation Of Uniaxial Compressive Strength Based On P-Wave And Schmidt Hammer Rebound Using Statistical Method. Arabian Journal of Geosciences. 6(6): 1925-1931.

O. Katz, Z. Reches, J.C. Roegiers. 2000. Evaluation Of Mechanical Rock Properties Using A Schmidt Hammer. Int J Rock Mech Mining Sci. 37(4):723–728.

A. Aydin and A. Basu. 2005. The Schmidt Hammer In Rock Material Characterization. EngGeol. 81:1–14.

V. Gupta. 2009. Non-Destructive Testing Of Some Higher Himalayan Rocks In The Satluj Valley. Bull EngGeol Environ. 68:409–416.

P. K. Sharma, T. N. Singh. 2008. A Correlation Between P-Wave Velocity, Impact Strength Index, Slake Durability Index And Uniaxial Compressive Strength. Bull EngGeol Environ. 67:17–22.

Z. A. Moradian, M. Behnia. 2009. Predicting The Uniaxial Compressive Strength And Static Young’s Modulus Of Intact Sedimentary Rocks Using The Ultrasonic Test. Int J Geomech. 9:1–14.

M. Khandelwal. 2013. Correlating P-Wave Velocity With The Physicomechanical Properties Of Different Rocks. Pure ApplGeophys. 170: 507–514.

M. Khandelwal, T. N. Singh. 2009. Correlating Static Properties Of Coal Measures Rocks With P-Wave Velocity. Int J Coal Geol. 79: 55–60.

D. C. Entwisle, R. N. Hobbs, L. D. Jones, D. Gunn, M. G. Raines. 2005. The Relationship Between Effective Porosity, Uniaxial Compressive Strength And Sonic Velocity Of Intact Borrowdale Volcanic Group Core Samples From Sellafield. GeotechGeolEng. 23: 793–809.

K. B. Chary, L. P. Sarma, K. J. Prasanna, V. N. A. Lakshmi, V. N. Lakshmi, M. V. M. S. Rao. 2006. Evaluation of Engineering Properties of Rock using Ultrasonic Velocity and Uniaxial Compressive Strength. National Seminar on Non-Destructive Evaluation Dec. 7 - 9. Hyderabad.

R. M. Goktan. 1988. Theoretical And Practical Analysis Of Rock Rippability.PhD. Thesis. Istanbul Technical University.

D. Verma, A. Kainthola, R. Singh, T. N. Singh, .2012. A Assessment Of Geo-Mechanical Properties Of Some Gondwana Coal Using P-Wave Velocity. Int Res J Geol Min. 2(9): 261-274.

R. Altindag. 2012. Correlation Between P-Wave Velocity And Some Mechanical Properties For Sedimentary Rocks. Journal of the Southern African Institute of Mining and Metallurgy. 112(3): 229-237.

F. Meulenkamp, M.A. Grima. 1999. Application Of Neural Networks For The Prediction Of The Unconfined Compressive Strength (UCS) From Equotip Hardness. Int. J. Rock Mech. Min. Sci. 36: 29–39.

V.K. Singh, D. Singh, T.N. Singh. 2001. Prediction Of Strength Properties Of Some Schistose Rocks From Petrographic Properties Using Artificial Neural Networks. Int. J. Rock Mech. Min. Sci. 38: 269–284.

S. Dehghan, G.H. Sattari, C.S. Chehreh, M.A. Aliabadi. 2010. Prediction Of Unconfined Compressive Strength And Modulus Of Elasticity For Travertine Samples Using Regression And Artificial Neural Network. Min. Sci. Technol. 20: 0041–0046.

E. Rabbani, F. Sharif, M. KoolivandSalooki, A. Moradzadeh. 2012. Application Of Neural Network Technique For Prediction Of Uniaxial Compressive Strength Using Reservoir Formation Properties. Int. J. Rock Mech. Min. Sci. 56. 100–111.

M. Rezaei, A. Majdi, M. Monjezi. 2012. An Intelligent Approach To Predict Unconfined Compressive Strength Of Rock Surrounding Access Tunnels In Longwall Coal Mining. Neural Comput. Appl. 24: 233–241.

N. Ceryan, U. Okkan, A. Kesimal. 2012. Prediction Of Unconfined Compressive Strength Of Carbonate Rocks Using Artificial Neural Networks. Environ. Earth Sci. 68: 807–819.

K. Zorlu, C. Gokceoglu, F. Ocakoglu, H.A. Nefeslioglu, S. Acikalin. 2008. Prediction Of Uniaxial Compressive Strength Of Sandstones Using Petrography-Based Models. Eng. Geol. 96: 141–158.

R. Jahanbakhshi, R. Keshavarzi, M.J. Azinfar. 2011. Intelligent Prediction Of Uniaxial Compressive Strength For Sandstone, in: 45th US Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association.

M. Monjezi, H.A. Khoshalan, M. Razifard. 2012. A Neuro-Genetic Network For Predicting Uniaxial Compressive Strength Of Rocks. Geotech. Geol. Eng. 30 .1053–1062.

N. Yesiloglu-Gultekin, C. Gokceoglu, E.A. Sezer. 2013. Prediction Of Uniaxial Compressive Strength Of Granitic Rocks By Various Nonlinear Tools And Comparison Of Their Performances. Int. J. Rock Mech. Min. Sci. 62: 113-122.

M. Beiki, A. Majdi, A. D. Givshad. 2013. Application Of Genetic Programming To Predict The Uniaxial Compressive Strength And Elastic Modulus Of Carbonate Rocks. Int. J. Rock Mech. Min. Sci. 63: 159–169.

D.A. Mishra, A. Basu. 2013. Estimation Of Uniaxial Compressive Strength Of Rock Materials By Index Tests Using Regression Analysis And Fuzzy Inference System. Eng. Geol. 160: 54–68.

M. Torabi-Kaveh, F. Naseri, S. Saneie, B. Sarshari. 2014. Application Of Artificial Neural Networks And Multivariate Statistics To Predict UCS And E Using Physical Properties Of Asmarilimestones. Arab. J. Geosci. http://dx.doi.org/10.1007/s12517-014-1331-0.

S. Yagiz, E.A. Sezer, C. Gokceoglu. 2012. Artificial Neural Networks And Nonlinear Regression Techniques To Assess The Influence Of Slake Durability Cycles On The Prediction Of Uniaxial Compressive Strength And Modulus Of Elasticity For Carbonate Rocks. Int. J. Numer. Anal. Met. 36: 1636–1650.

D. JahedArmaghani, E. Tonnizam Mohamad, E. Momeni, M. Sundaram, M. F. Mohd Amin. 2014. An Adaptive Neuro-Fuzzy Inference System For Predicting Unconfined Compressive Strength And Young’s Modulus: A Study On Main Range Granite. Bulletin of Engineering Geology and Environmental. 10.1007/s10064-014-0687-4.

D. Jahed Armaghani, E. Tonnizam Mohamad, E. Momeni, M. Monjezi, M. Sundaram. 2016. Prediction Of The Strength And Elasticity Modulus Of Granite Through An Expert Artificial Neural Network. Arabian Journal of Geosciences. (Accepted.)

Downloads

Published

2015-11-23

Issue

Section

Science and Engineering

How to Cite

PREDICTION OF UNCONFINED COMPRESSIVE STRENGTH OF ROCKS: A REVIEW PAPER. (2015). Jurnal Teknologi (Sciences & Engineering), 77(11). https://doi.org/10.11113/jt.v77.6393