EFFECTS OF NANOPARTICLE FILLER ON THERMO-PHYSICAL PROPERTIES OF RATTAN POWDER-FILLED POLYPROPYLENE COMPOSITES

Authors

  • Siti Nikmatin Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, 16680 Bogor, Indonesia
  • Achmad Syafiuddin School of Graduate Studies, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Ahmad Beng Hong Kueh UTM Construction Research Centre, Institute for Smart Infrastructures and Innovative Construction (ISIIC), Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Yohanes Aris Purwanto Faculty of Agricultural Technology, Bogor Agricultural University, 16680 Bogor, Indonesia

DOI:

https://doi.org/10.11113/jt.v77.6415

Keywords:

Composites, nanoparticle size, natural fillers, polypropylene, thermal properties

Abstract

Poor bonding with its accompanying matrix remains the major factor that inhibits the widespread use of natural fiber as filler for composite materials. Recent literature has suggested that this matter can be addressed by applying fillers in nanometer size. Thus, the present study is carried out to investigate the effects of incorporating rattan powder of nanoparticle size into polypropylene (PP) on its thermo-physical properties. Production methodology of nanoparticle, particle analysis, morphological study, and thermal analysis were carried out and discussed. The composites were produced using the twin extrusion moulding. The production of nanoparticle was found optimal under 30 minutes of milling time, confirmed by means of particle analyzer and morphological inspection. Better thermal stability was found in PP reinforced with 5% rattan nanoparticle filler compared to the neat PP and PP with 10% glass fiber.

References

K. Saminathan, P. Selvakumar, and N. Bhatnagar. 2008. Fracture Studies Of Polypropylene/Nanoclay Composite. Part I: Effect Of Loading Rates On Essential Work Of Fracture. Polymer Testing. 27(3): 296.

M. Majid, E.-D. Hassan, A. Davoud, and M. Saman. 2011. A study on the Effect Of Nano-Zno On Rheological And Dynamic Mechanical Properties Of Polypropylene: Experiments And Models. Compos. Part. B-Eng. 42(7): 2038.

P. Wambua, J. Ivens, and I. Verpoest. 2003. Natural Fibres: Can They Replace Glass In Fibre Reinforced Plastics? Compos. Sci. Technol. 63(9): 1259.

M. El Achaby, F. Z. Arrakhiz, S. Vaudreuil, E. M. Essassi, and A. Qaiss. 2012. Piezoelectric β-polymorph Formation And Properties Enhancement In Graphene Oxide–PVDF Nanocomposite Films. Appl. Surf. Sci. 258(19): 7668.

M. Ataeefard, and S. Moradian. 2011. Surface Properties Of Polypropylene/Organoclay Nanocomposites. Appl. Surf. Sci. 257(6): 2320.

L. Sobczak, R. W. Lang, and A. Haider. 2012. Polypropylene Composites With Natural Fibers And Wood–General Mechanical Property Profiles. Compos. Sci. Technol. 72(5): 550.

S. K. Esthappan, S. K. Kuttappan, and R. Joseph. 2012. Thermal and Mechanical Properties Of Polypropylene/Titanium Dioxide Nanocomposite Fibers. Mater. Design. 37: 537.

F. Z. Arrakhiz, M. El Achaby, R. Bouhfid, S. Vaudreuil, M. Essassi, and A. Qaiss. 2012. Mechanical and Thermal Properties Of Polypropylene Reinforced With Alfa Fiber Under Different Chemical Treatment. Mater. Design. 35: 318.

F. Z. Arrakhiz, M. El Achaby, A. C. Kakou, S. Vaudreuil, K. Benmoussa, R. Bouhfid, O. Fassi-Fehri, and A. Qaiss. 2012. Mechanical Properties Of High Density Polyethylene Reinforced With Chemically Modified Coir Fibers: Impact Of Chemical Treatments. Mater. Design. 37: 379.

S. Annie Paul, A. Boudenne, L. Ibos, Y. Candau, K. Joseph, and S. Thomas. 2008. Effect of Fiber Loading And Chemical Treatments On Thermophysical Properties Of Banana Fiber/Polypropylene Commingled Composite Materials. Compos. Part. A-Appl. S. 39(9): 1582.

K. T. Lau, C. Gu, and D. Hui. 2006. A Critical Review On Nanotube And Nanotube/Nanoclay Related Polymer Composite Materials. Compos. Part. B-Eng. 37(6): 425.

H. Baniasadi, A. Ramazani S.A, and S. Javan Nikkhah. 2010. Investigation of In Situ Prepared Polypropylene/Clay Nanocomposites Properties And Comparing To Melt Blending Method. Mater. Design. 31(1): 76.

M. El Achaby, F. Z. Arrakhiz, S. Vaudreuil, E. M. Essassi, A. Qaiss, and M. Bousmina. 2013. Preparation and Characterization Of Melt-Blended Graphene Nanosheets–Poly(Vinylidene Fluoride) Nanocomposites With Enhanced Properties. J. Appl. Polym. Sci. 127(6): 4697.

H. Essabir, E. Hilali, A. Elgharad, H. El Minor, A. Imad, A. Elamraoui, and O. Al Gaoudi. 2013. Mechanical and Thermal Properties Of Bio-Composites Based On Polypropylene Reinforced With Nut-Shells Of Argan Particles. Mater. Design. 49: 442.

K. Muniandy, H. Ismail, and N. Othman. 2012. Studies on Natural Weathering Of Rattan Powder-Filled Natural Rubber Composites. BioResources. 7(3): 3999.

N. S. Balakrishna, H. Ismail, and N. Othman. 2012. The Effects Of Rattan Filler Loadings On Properties Of Rattan Powder-Filled Polypropylene Composites. BioResources. 7(4): 5677.

N. S. Balakrishna, H. Ismail, and N. Othman. 2013. Processing, Mechanical, And Thermal Properties Of Polypropylene/Rattan Powder/Talc Hybrid Composites. BioResources. 8(4): 6409.

N. S. Balakrishna, H. Ismail, and N. Othman. 2014. Polypropylene/Rattan Powder/Kaolin Hybrid Composites: Processing, Mechanical and Thermal Properties. Polym-Plast. Technol. 53(5): 451.

M. Tajvidi, and G. Ebrahimi. 2003. Water Uptake And Mechanical Characteristics Of Natural Filler–Polypropylene Composites. J. Appl. Polym. Sci. 88(4): 941.

Z. T. Yao, T. Chen, H. Y. Li, M. S. Xia, Y. Ye, and H. Zheng. 2013. Mechanical and Thermal Properties Of Polypropylene (PP) Composites Filled With Modified Shell Waste. J. Hazard. Mater. 262: 212.

R. Gadioli, J. A. Morais, W. R. Waldman, and M.- A. De Paoli. 2014. The Role Of Lignin In Polypropylene Composites With Semi-Bleached Cellulose Fibers: Mechanical Properties And Its Activity As Antioxidant. Polym. Degrad. Stabil. 108: 23.

J. Xiao, and Y. Chen. 2015. New Micro-Structure Designs Of A Polypropylene (PP) Composite With Improved Impact Property. Mater. Lett. 152: 210.

I. Naghmouchi, F. X. Espinach, P. Mutjé, and S. Boufi. 2015. Polypropylene Composites Based On Lignocellulosic Fillers: How The Filler Morphology Affects The Composite Properties. Mater. Design. 65: 454.

S. L. Rosa, S. B. Nachtigall, and C. Ferreira. 2009. Thermal and Dynamic-Mechanical Characterization Of Rice-Husk Filled Polypropylene Composites. Macromol. Res. 17(1): 8.

H. Essabir, E. Hilali, A. Elgharad, H. El Minor, A. Imad, A. Elamraoui, and O. Al Gaoudi. 2013. Mechanical and Thermal Properties Of Bio-Composites Based On Polypropylene Reinforced With Nut-Shells Of Argan Particles. Mater. Design. 49: 442.

H. Essabir, A. Elkhaoulani, K. Benmoussa, R. Bouhfid, F. Z. Arrakhiz, and A. Qaiss. 2013. Dynamic Mechanical Thermal Behavior Analysis Of Doum Fibers Reinforced Polypropylene Composites. Mater. Design. 51: 780.

G. W. Beckermann, and K. L. Pickering. 2008. Engineering and Evaluation Of Hemp Fibre Reinforced Polypropylene Composites: Fibre Treatment And Matrix Modification. Compos. Part. A-Appl. S. 39(6): 979.

W. Chaisan, R. Yimnirun, and S. Ananta. 2009. Effect of Vibro-Milling Time On Phase Formation And Particle Size Of Barium Titanate Nanopowders. Ceram. Int. 35(1): 173.

R. Wongmaneerung, R. Yimnirun, and S. Ananta. 2006. Effect of Vibro-Milling Time On Phase Formation And Particle Size Of Lead Titanate Nanopowders. Mater. Lett. 60(12): 1447.

O. Khamman, W. Chaisan, R. Yimnirun, and S. Ananta. 2007. Effect of Vibro-Milling Time On Phase Formation And Particle Size Of Lead Zirconate Nanopowders. Mater. Lett. 61(13): 2822.

O. Khamman, T. Sarakonsri, A. Rujiwatra, Y. Laosiritaworn, R. Yimnirun, and S. Ananta. 2007. Effects of Milling Time And Calcination Condition On Phase Formation And Particle Size Of Lead Zirconate Nanopowders Prepared By Vibro-Milling. J Mater Sci. 42(20): 8438.

M. C. Saha, M. E. Kabir, and S. Jeelani. 2008. Enhancement in Thermal And Mechanical Properties Of Polyurethane Foam Infused With Nanoparticles. Mater. Sci. Eng. A. 479(1-2): 213.

K. Muniandy, H. Ismail, and N. Othman. 2012. Effects of Partial Replacement Of Rattan Powder By Commercial Fillers On The Properties Of Natural Rubber Composites. BioResources. 7(4): 4640.

A. B. H. Kueh. 2014. Size-influenced Mechanical Isotropy Of Singly-Plied Triaxially Woven Fabric Composites. Compos. Part. A-Appl. S. 57: 76.

A. Talaiekhozani, A. Keyvanfar, R. Andalib, M. Samadi, A. Shafaghat, H. Kamyab, M. Z. A. Majid, R. M. Zin, M. A. Fulazzaky, C. T. Lee, and M. W. Hussin. 2014. Application of Proteus Mirabilis And Proteus Vulgaris Mixture To Design Self-Healing Concrete. Desalination Water Treat. 52(19-21): 3623.

S. A. Asipita, M. Ismail, M. Z. A. Majid, Z. A. Majid, C. Abdullah, and J. Mirza. 2014. Green Bambusa Arundinacea Leaves Extract As A Sustainable Corrosion Inhibitor In Steel Reinforced Concrete. J. Clean. Prod. 67: 139.

H. Mohamad, K. Soga, and B. Amatya. 2014. Thermal Strain Sensing of Concrete Piles Using Brillouin Optical Time Domain Reflectometry. Geotech. Test. J. 37(2): 333.

M. M. Tahir, P. N. Shek, and C. S. Tan. 2009. Push-Off Tests On Pin-Connected Shear Studs With Composite Steel–Concrete Beams. Constr. Build. Mater. 23(9): 3024.

N. M. Noor, N. Yahaya, A. Abdullah, M. M. Tahir, and L. K. Sing. 2012. Microbiologically Influenced Corrosion Of X-70 Carbon Steel By Desulfovibrio Vulgaris. Adv. Sci. Lett. 13(1): 312.

A. B. H. Kueh, W. W. Seh, P. N. Shek, C. S. Tan, and M. M. Tahir. 2011. Maximum Local Thermal Effects Carpet Plot For Symmetric Laminated Composite Plates. Adv. Mater. Res. 250: 3748.

Downloads

Published

2015-11-23

How to Cite

EFFECTS OF NANOPARTICLE FILLER ON THERMO-PHYSICAL PROPERTIES OF RATTAN POWDER-FILLED POLYPROPYLENE COMPOSITES. (2015). Jurnal Teknologi, 77(16). https://doi.org/10.11113/jt.v77.6415