SENSITIVITY MAP GENERATION FOR CONDUCTING STRATEGY IN ELECTRICAL RESISTANCE TOMOGRAPHY

Authors

  • Suzanna Ridzuan Aw Faculty of Electrical & Automation Engineering Technology, Terengganu Advance Technical Institute University College(TATiUC), Jalan Panchor, Telok Kalong, 24000, Kemaman, Terengganu, Malaysia
  • Ruzairi Abdul Rahim Process Tomography and Instrumentation Engineering Research Group (PROTOM-i), Innovative Engineering Research Alliance, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Fazlul Rahman Mohd Yunus Process Tomography and Instrumentation Engineering Research Group (PROTOM-i), Innovative Engineering Research Alliance, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Mohd Hafiz Fazalul Rahiman School of Mechatronic Engineering, Universiti Malaysia Perlis, Pauh Putra Campus, 02600 Arau, Perlis, Malaysia
  • Yasmin Abdul Wahab Department of Instrumentation & Control Engineering (ICE), Faculty of Electrical & Electronics Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia
  • Mohd Badril Nor Shah Universiti Teknikal Malaysia, 76100, Melaka, Malaysia
  • Jayasuman Pusppanathan Process Tomography and Instrumentation Engineering Research Group (PROTOM-i), Innovative Engineering Research Alliance, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Elmy Johana Mohamed Department of Mechatronics and Robotics, Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v77.6460

Keywords:

Conducting boundary strategy, COMSOL, electrical resistance tomography, sensitivity map

Abstract

This paper presents the sensitivity map generation of Electrical Resistance Tomography (ERT) for a system using conducting vessel pipe. A finite element model software using 2D COMSOL model consisting of 16 electrodes were attached invasively in a stainless steel pipe to solve for the forward problem. The conducting boundary approach was applied to the system to avoid the grounding effect. 

References

H. Jin, S. Yang, G. He, M. Wang, and R. A. Williams. 2010. The Effect Of Gas-Liquid Counter-Current Operation On Gas Hold-Up In Bubble Columns Using Electrical Resistance Tomography. Journal of Chemical Technology and Biotechnology. 85: 1278-1283.

Y. Xu, H. Wang, Z. Cui, and F. Dong. 2009. Application of Electrical Resistance Tomography For Slug Flow Measurement In Gas/Liquid Flow Of Horizontal Pipe. In 2009 IEEE International Workshop on Imaging Systems and Techniques, IST 2009, May 11, 2009-May 12, 2009, Hong Kong, China. 319-323.

T. Dyakowski, L. F. C. Jeanmeure, and A. J. Jaworski. 2000. Applications of Electrical Tomography For Gas–Solids And Liquid–Solids Flows—A Review. Powder Technology. 112: 174-192.

M. Wang, F. J. Dickin, and R. A. Williams. 1994. Electrical Resistance Tomography Of Metal Walled Vessels And Pipelines. Electronics Letters. 30: 771-773.

S. R. Aw, R. A. Rahim, M. H. F. Rahiman, F. R. M. Yunus, and C. L. Goh. 2014. Electrical Resistance Tomography: A Review Of The Application Of Conducting Vessel Walls. Powder Technology. 254: 256-264.

W. R. Fan and H. X. Wang. 2010. Maximum Entropy Regularization Method For Electrical Impedance Tomography Combined With A Normalized Sensitivity Map. Flow Measurement and Instrumentation. 21: 277-283.

A. Seppanen, K. Karhunen, A. Lehikoinen, J. P. Kaipio, and P. J. M. Monteiro. 2009. Electrical Resistance Tomography Imaging Of Concrete. In 2nd International Conference on Concrete Repair, Rehabilitation and Retrofitting, ICCRRR 2008, November 24, 2008-November 26, 2008, Cape Town, South africa. 231-232.

K. Yong Song and et al. 2007. Sensitivity Map Generation In Electrical Capacitance Tomography Using Mixed Normalization Models. Measurement Science and Technology. 18: 2092.

K. Karhunen, A. Seppanen, A. Lehikoinen, J. Blunt, J. P. Kaipio, and P. J. M. Monteiro. 2010. Electrical Resistance Tomography For Assessment Of Cracks In Concrete. ACI Materials Journal. 107: 523-531.

S. G. Liter, J. R. Torczynski, K. A. Shollenberger, and S. L. Ceccio. 2002. Electrical-Impedance Tomography for Opaque Multiphase Flows in Metallic (Electrically-Conducting) Vessels. Sandia National Labs, Albuquerque, NM (US); Sandia National Labs., Livermore, CA (US).

B. D. Grieve. 2002. On-line Electrical Impedance Tomography for Industrial Batch Processing. Degree of Doctor of Philosophy, Department of Chemical Engineering, UMIST Manchester, UK.

K. S. Cheng, D. Isaacson, J. C. Newell, and D. G. Gisser. 1989. Electrode Models For Electric Current Computed Tomography. IEEE Transactions on Biomedical Engineering. 36: 918-924.

M. Wang, F. J. Dickin, and R. Mann. 1999. Electrical Resistance Tomographic Sensing Systems For Industrial Applications. Chemical Engineering Communications. 175: 49-70.

S. Huang, Z. Wang, and Y. Jin. 1999. Studies on Gas-Solid-Solid Circulating Fluidized-Bed Reactors. Chemical Engineering Science. 54: 2067-2075.

H. Zhou, L. Xu, Z. Cao, J. Hu, and X. Liu. 2012. Image Reconstruction For Invasive ERT In Vertical Oil Well Logging. Chinese Journal of Chemical Engineering. 20: 319-328.

J. Lehr. 1972. A Vector Derivation Useful in Impedance Plethysmographic Field Calculations. Biomedical Engineering, IEEE Transactions on. BME-19: 156-157.

J. L. Davidson, L. S. Ruffino, D. R. Stephenson, R. Mann, B. D. Grieve, and T. A. York. 2004. Three-dimensional Electrical Impedance Tomography Applied To A Metal-Walled Filtration Test Platform. Measurement Science and Technology. 15: 2263.

J. Sun and W. Yang. 2014. Evaluation of Fringe Effect Of Electrical Resistance Tomography Sensor. Measurement. 53: 145-160.

Downloads

Published

2015-11-24

How to Cite

SENSITIVITY MAP GENERATION FOR CONDUCTING STRATEGY IN ELECTRICAL RESISTANCE TOMOGRAPHY. (2015). Jurnal Teknologi, 77(17). https://doi.org/10.11113/jt.v77.6460