A REVIEW OF NON-INVASIVE IMAGING: THE OPPORTUNITY OF MAGNETIC INDUCTION TOMOGRAPHY MODALITY IN AGARWOOD INDUSTRY

Authors

  • Zulkarnay Zakaria Tomography Imaging Research Group, School of Mechatronic Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
  • Ahmad Azizun Hakim Airiman Tomography Imaging Research Group, School of Mechatronic Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
  • Masturah Tunnur Mohamad Talib Tomography Imaging Research Group, School of Mechatronic Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
  • Maliki Ibrahim School of Manufaturing Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
  • Ibrahim Balkhis Tomography Imaging Research Group, School of Mechatronic Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
  • Muhammad Saiful Badri Mansor Process Tomography and Instrumentation Engineering Research Group (PROTOM-i), Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
  • Ruzairi Abdul Rahim Process Tomography and Instrumentation Engineering Research Group (PROTOM-i), Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v77.6464

Keywords:

Agarwood, pre-assessment, magnetic induction tomography, NDE

Abstract

The needs for non-invasive technique in agarwood industry could enhance and preserve the future of this industry in Malaysia as well as in most of the Asia countries. Normally karas tree which produces agarwood needs at least more than ten years to yield a matured agarwood resin. Thus cutting down the immature trees without pre-assessment on the agarwood content would become a waste of resources. This paper discusses the NDE techniques in wood industry which has the potential to be applied in karas tree for pre-assessment of agarwood volume embedded inside the trees. Finally future research in agarwood imaging using Magnetic Induction Tomography modality is addressed.

References

N. Ain, N. Rahman, M. N. Suratman, A. Rasip, A. Ghani, and T. F. Ying. 2012. Incorporating Agroforestry Practices in Karas (Aquilaria malaccensis) Plantations in Malaysia. IEEE Symposium on Business, Engineering and Industrial Applications. 181-185.

K. Nor Fazila and K. Ku Halim. 2012. EffEcts of Soaking On Yield And Quality Of Agarwood Oil. J. Trop. For. Sci. 24/4: 557-564.

N. Indahsuary, D. Nandika, L. Karlinasari, and E. Santoso. 2014. Reliability of Sonic Tomography To Detect Agarwood In Aquilaria. J. Ithe ndian Acad. Wood Sci. 11/Jun: 65-71.

S. Lee, S. J. Lee, J. S. Lee, K. B. Kim, J. J. Lee, and H. Yeo. 2011. Basic Study On Nondestructive Evaluation Of Artificial Deterioration Of A Wooden Rafter By Ultrasonic Measurement. J. Wood Sci. 57: 387-394.

R. a. Mariño, M. E. Fernández, C. Fernández-Rodríguez, and M. Méndez. 2010. Detection Of Pith Location In Chestnut Lumber (Castanea Sativamill.) By Means Of Acoustic Tomography And Longitudinal Stress-Wave Velocity. Eur. J. Wood Wood Prod. 68: 197-206.

L. Li, X. Wang, L. Wang, and R. B. Allison. 2012. Acoustic Tomography In Relation To 2D Ultrasonic Velocity And Hardness Mappings. Wood Sci. Technol. 46: 551-561.

Y. Abdul Wahab, R. Abdul Rahim, M. H. Fazalul Rahiman, S. Ridzuan Aw, F. R. Mohd Yunus, C. L. Goh, H. Abdul Rahim, and L. P. Ling, 2015. Non-invasive Process Tomography In Chemical Mixtures–A Review. Sensors Actuators B Chem. 210: 602-617.

F. Longuetaud, L. Saint-André, and J. M. Leban. 2005. Automatic Detection Of Annual Growth Units On Picea Abies Logs Using Optical And X-Ray Techniques. J. Nondestruct. Eval. 24(1): 29-43.

T. Tanaka and Y. Kawai. 2013. A New Method For Nondestructive Evaluation Of Solid Wood Moisture Content Based On Dual-Energy X-Ray Absorptiometry. Wood Sci. Technol. 47: 1213-1229.

F. C. Beall. 2000. Subsurface Sensing of Properties and Defects in Wood and Wood Products. Subsurf. Sens. Technol. Appl. 1(2): 181-204.

Voichita Bucur. 2003. Ionizing Radiation Computed Tomography. In Nondestructive Characterization and Imaging of Wood. 61.

H.-Y. Wei, L. Ma, and M. Soleimani. 2012. Volumetric Magnetic Induction Tomography. 055401.

H. Griffiths. 2005. Magnetic Induction Tomography. In Electrical Impedance Tomography: Methods, History and Applications, 1st Ed., D. S. Holder, Ed. Bristol, UK: Institute of Physics Publishing. 213-238.

Z. Zakaria, R. A. Rahim, M. S. B. Mansor, S. Yaacob, N. M. Nor Ayob, S. Z. M. Muji, and M. H. F. Rahiman. 2012. Advancements in Transmitters and Sensors for Biological Tissue Imaging in Magnetic Induction Tomography. Sensors. 12(6): 7126-7156.

H. Griffiths. May 2001. Magnetic Induction Tomography. Meas. Sci. Technol. 12(2): 1126-1131.

M. Zolgharni, H. Griffiths, and P. D. Ledger, Aug. 2010. Frequency-difference MIT Imaging Of Cerebral Haemorrhage With A Hemispherical Coil Array: Numerical Modelling. Physiol. Meas. 31(8): S111-25.

R. Merwa, K. Hollaus, and H. Scharfetter. 2004. Detection of Brain Oedema Using Magnetic Induction Tomography : A Feasibility Study Of The Likely Sensitivity And Detectability. Physiol. Meas. 25: 1-8.

C. H. Riedel, M. Keppelen, S. Nani, and O. Dossel. 2003. Post Mortem Conductivity Measurement Of Liver Tissue Using A Contact Free Magnetic Induction Sensor. Proc. 25th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 3126-3129.

a. Richer and a. Adler. 2005. Eddy Current Based Flexible Sensor for Contactless Measurement of Breathing. 2005 IEEE Instrumentationand Meas. Technol. Conf. Proc. May: 257-260.

G. Y. Tian, A. Al-Qubaa, and J. Wilson, Feb. 2012. Design of an electromagnetic imaging system for weapon detection based on GMR sensor arrays. Sensors Actuators A Phys. 174: 75-84.

L. Ma, H.-Y. Wei, and M. Soleimani. 2012. Pipelines Inspection Using Magnetic Induction Tomography Based on a Narrowband Pass Filtering Method. Prog. Electromagn. Res. 23: 65-78.

Z. Liu, M. He, and H. Xiong, Apr. 2005. Simulation Study Of The Sensing Field In Electromagnetic Tomography For Two-Phase Flow Measurement. Flow Meas. Instrum. 16(2-3): 199-204.

H.-Y. Wei and M. Soleimani. 2012. Three Dimensional Magnetic Induction Tomography Imaging Using A Matrix Free Krylov Subspace Inversion Algorithm. Prog. Electromagn. Res. 122(November 2011): 29-45.

L. Ma and M. Soleimani. Dec 2012. Limited Angle And Limited Data Electromagnetic Induction Tomography: Experimental Evaluation Of The Effect Of Missing Data. Meas. Sci. Technol. 23(12): 125406.

Y. Deng and X. Liu. Jan. 2011. Electromagnetic Imaging Methods For Nondestructive Evaluation Applications. Sensors. 11(12): 1177411-808.

J. Simmonds and P. Gaydecki, Jul. 1999. Defect Detection In Embedded Reinforcing Bars And Cables Using A Multi-Coil Magnetic Field Sensor. Meas. Sci. Technol. 10(7): 640-648.

G. F. Pla, M. O. Eberhard, and P. H. Eberhard. Mar. 1994. Magnetic Imaging Of Reinforcing Steel. J. Nondestruct. Eval. 13(1): 23-32.

J. L. Simmonds and P. A. Gaydecki. 1998. Defect Visualization and Location Of Reinforcing Bars and Cables in Concrete using Active Electromagnetic Induction Imaging. Rev. Prog. Nondestruct. Eval. 17: 1565-1572.

Z. Zakaria, M. S. B. Mansor, R. a. Rahim, I. Balkhis, M. H. F. Rahiman, H. a. Rahim, and S. Yaacob. 2013. Magnetic Induction Tomography: A Review on the Potential Application in Agricultural Industry of Malaysia. J. Agric. Sci. 5(9): 78-82.

Z. Zakaria, M. Saiful, B. Mansor, R. Abdul, I. Balkhis, M. Hafiz, and F. Rahiman. 2013. Magnetic Induction Tomography: Receiver Circuit and Its Design Criteria. J. Teknol. 64(5): 83-87.

H. Xiong and L. Xu. 2000. Electromagnetic Tomography (EMT): Theoretical Analysis of the Forward Problem. Appl. Math. Mech. 21(9): 1034-1044.

R. Merwa and H. Scharfetter. Jul. 2007. Magnetic Induction Tomography: Evaluation Of The Point Spread Function And Analysis Of Resolution And Image Distortion. Physiol. Meas. 28(7): S313-24.

C.-N. Huang, F.-M. Yu, and H.-Y. Chung. Sep. 2007. Rotational Electrical Impedance Tomography. Meas. Sci. Technol. 18(9): 2958-2966.

H. Scharfetter, H. K. Lackner, and J. Rosell, Feb. 2001. Magnetic Induction Tomography: Hardware For Multi-Frequency Measurements In Biological Tissues. Physiol. Meas. 22(1): 131-146.

L. Ma, A. Hunt, and M. Soleimani. 2015. Experimental Evaluation Of Conductive Flow Imaging Using Magnetic Induction Tomography. Int. J. Multiph. Flow. 72: 198-209.

S. Puwal and B. J. Roth. 2011. Fourier Analysis In Magnetic Induction Tomography : Mapping Of Anisotropic, Inhomogeneous Resistivity. Meas. Sci. Technol. 22(8): 1-8.

C. Wang, J. Zhang, F. Li, Z. Cui, and C. Xu, Oct. 2011. Design of a Non-Magnetic Shielded And Integrated Electromagnetic Tomography System. Meas. Sci. Technol. 22(10): 1-10.

Z. Zakaria, I. Balkhis, S. Yaacob, M. S. B. Mansor, R. A. Rahim, and H. A. Rahim, Apr. 2013. Evaluation on the Sensitivity of Tri-Coil Sensor Jig for 3D Image Reconstruction in Magnetic Induction Tomography. 2013 UKSim 15th Int. Conf. Comput. Model. Simul. 768-773.

J. Rosell-Ferrer, R. Merwa, P. Brunner, and H. Scharfetter. May 2006. A Multifrequency Magnetic Induction Tomography System Using Planar Gradiometers: Data Collection And Calibration. Physiol. Meas. 27(5): S271-80.

B. Dekdouk, M. H. Pham, D. W. Armitage, C. Ktistis, M. Zolgharni, and A. J. Peyton. 2009. A Feasibility Study On The Delectability Of Edema Using Magnetic Induction Tomography Using An Analytical Model. In ECIFMBE 2008, IFMBE Proceedings 22. 736-739.

W. Yin, G. Chen, L. Chen, and B. Wang. 2011. The Design Of A Digital Magnetic Induction Tomography (MIT) System For Metallic Object Imaging Based On Half Cycle Demodulation. Sensors Journal, IEEE.

H.-Y. Wei, L. Ma, and M. Soleimani. May 2012. Volumetric Magnetic Induction Tomography. Meas. Sci. Technol. 23(5): 055401.

B. Dekdouk, W. Yin, C. Ktistis, D. W. Armitage, and A. J. Peyton. Apr. 2010. A Method To Solve The Forward Problem In Magnetic Induction Tomography Based On The Weakly Coupled Field Approximation. IEEE Trans. Biomed. Eng. 57(4): 914-21.

H.-Y. Wei and M. Soleimani. May 2012. Hardware and Software Design For A National Instrument-Based Magnetic Induction Tomography System For Prospective Biomedical Applications. Physiol. Meas. 33(5): 863-79.

D. Gursoy and H. Scharfetter. 2009. Feasibility of Lung Imaging Using Magnetic Induction Tomography. In IFMBE Proceedings 25/II. 4: 525-528.

H. Scharfetter, R. Merwa, and K. Pilz. 2005. A New Type Of Gradiometer For The Receiving Circuit Of Magnetic Induction Tomography (MIT). Physiol. Meas. 26(2): 307-318.

M. Soleimani. 2008. Computational Aspects of Low Frequency Electrical and Electromagnetic Tomography: A review Study. Int. J. Numer. Anal. Model. 5(3): 407-440.

Y. Maimaitijiang, M. a Roula, and J. Kahlert. Aug. 2010. Approaches for Improving Image Quality In Magnetic Induction Tomography. Physiol. Meas. 31(8): S147-56.

C. H. Igney, S. Watson, R. J. Williams, H. Griffiths, and O. Dössel, Apr. 2005. Design And Performance Of A Planar-Array MIT System With Normal Sensor Alignment. Physiol. Meas. 26(2): S263-78.

a Korjenevsky, V. Cherepenin, and S. Sapetsky. Feb. 2000. Magnetic induction tomography: experimental realization. Physiol. Meas. 21(1): 89-94.

K. Stawicki, S. Gratkowski, M. Komorowski, and T. Pietrusewicz. Mar. 2009. A New Transducer for Magnetic Induction Tomography. IEEE Trans. Magn. 45(3): 1832-1835.

Downloads

Published

2015-11-24

How to Cite

A REVIEW OF NON-INVASIVE IMAGING: THE OPPORTUNITY OF MAGNETIC INDUCTION TOMOGRAPHY MODALITY IN AGARWOOD INDUSTRY. (2015). Jurnal Teknologi (Sciences & Engineering), 77(17). https://doi.org/10.11113/jt.v77.6464