ELECTRICAL POTENTIAL AND ELECTRICAL FIELD DISTRIBUTION OF SQUARE ELECTRICAL CAPACITANCE TOMOGRAPHY

Authors

  • Mohammad Din Protom-i Research Group, Innovation Engineering Research Alliance, Faculty of Electrical Engineering, Universiti Teknologi Malaysia 81310 UTM Johor Bahru, Johor, Malaysia
  • Leow Pei Ling Protom-i Research Group, Innovation Engineering Research Alliance, Faculty of Electrical Engineering, Universiti Teknologi Malaysia 81310 UTM Johor Bahru, Johor, Malaysia
  • Ruzairi Abdul Rahim Protom-i Research Group, Innovation Engineering Research Alliance, Faculty of Electrical Engineering, Universiti Teknologi Malaysia 81310 UTM Johor Bahru, Johor, Malaysia
  • Nur Adila Mohd Razali Protom-i Research Group, Innovation Engineering Research Alliance, Faculty of Electrical Engineering, Universiti Teknologi Malaysia 81310 UTM Johor Bahru, Johor, Malaysia
  • Jaysuman Pusppanathan Protom-i Research Group, Innovation Engineering Research Alliance, Faculty of Electrical Engineering, Universiti Teknologi Malaysia 81310 UTM Johor Bahru, Johor, Malaysia
  • Chee Pei Song Protom-i Research Group, Innovation Engineering Research Alliance, Faculty of Electrical Engineering, Universiti Teknologi Malaysia 81310 UTM Johor Bahru, Johor, Malaysia
  • Aizat Azmi Protom-i Research Group, Innovation Engineering Research Alliance, Faculty of Electrical Engineering, Universiti Teknologi Malaysia 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v77.6469

Keywords:

Electrical Capacitance Tomography, segmentation excitation

Abstract

Electrical Capacitance Tomography (ECT) system helps user to understand the flow distribution inside the close pipe by detecting the variation of permittivity distribution in the inspection area. Generally, most reported ECT systems are implemented to circular shape pipe only. However, square shape pipes are sometimes found in power industry and chemical reactor, therefore this paper is studying the electrical distribution of ECT system within a square pipe. ECT is able to provide fast response, low cost and non-radiation system but similar to all other electrical tomography system, ECT suffers from soft-field effect. This paper proposes segmentation excitation to overcome this problem. Segmentation excitation applies when more than one electrode excited at one time. This paper focuses Protocol 2 or 2-electrode excitation for 8-electrode square ECT system. The simulation was done by using COMSOL Multiphysics.  The images of the excitations are presented in this paper. The electrical potential is recorded at the center of the system to analyses the strength of the electrical potential. In addition for square ECT system, the corner configuration provides 3.40% higher electrical potential compared to side excitation configuration.

References

W. R. Hendee. 1989.Cross Sectional Medical Imaging: A History. RadioGraphics. 9(6): 1155-1180.

N. Reinecke and D. Mewes. 1996. Recent Developments and Industrial/Research Applications of Capacitance Tomography. Measurement Science and Technology, 7(3): 233-246.

Process Tomography Ltd. 2009. Electrical Capacitance Tomography System Type TFLR5000 Operating Manual, Fundamentals of ECT.

M. S. Beck and R. A. Williams. 1996. Process Tomography: A European Innovation and Its Applications. Measurement Science and Technology. 7(3): 215-224.

P. Waje and N. Warke. 2012. Review: Electrical Capacitance Tomography. International Journal of Engineering Research and Applications. 49-53.

W. Q. Yang and S. Liu. 1999. Electrical Capacitance Tomography with Square Sensor. Electronics Letters. 35(4): 295-296.

C. Zhang, X. Lijun, F. Wenru, and W. Huaxiang. 2011. Electrical Capacitance Tomography for Sensors of Square Cross Sections Using Calderon's Method. IEEE Transaction on Instrumentation and Measurement. 60(3): 900-907.

C. Zhang, X. Lijun, F. Wenru, and W. Huaxiang. 2010. Electrical Capacitance Tomography With A Non-Circular Sensor Using The Dbar Method. Measurement Science and Technology. 21(1): 1-6.

S. Liu, W. Q. Yang, H. Wang, F. Jiang, and Y. Su. 2001.Investigation of Square Fluidized Beds Using Capacitance Tomography: Preliminary Results. Measurement Science and Technology. 12(8): 1120-1125.

Q. Marashdeh, W. Warsito, a. Liang-Shih Fan, and S. M. Fernando L. Teixeira, IEEE. 2007.A Multimodal Tomography System Based on ECT Sensors. IEEE SENSORS JOURNAL. 7(3): 426-433.

X. Song. 2005. Statistical Analysis and Evaluation of Near Infrared Tomographic Imaging System PhD, Thayer School of Engneering Dartmouth College, Hanover, New Hampshire.

L. Peng, C. Mou, D. Yao, B. Zhang, and D. Xiao. 2005.Determination of the Optimal Axial Length of the Electrode in an Electrical Capacitance Tomography Sensor. Flow Measurement and Instrumentation. 16(2-3): 169-175.

N. A. A. Rahman, R. A. Rahim, A. M. Nawi, L. P. Ling, J. Pusppanathan, E. J. Mohamad, et al. 2015.A Review on Electrical Capacitance Tomography Sensor Development. Jurnal Teknologi. 73(3): 35-41.

R. M. Zain and R. A. Rahim. 2009.Development of Hardware Dual Modality Tomography System. Sensors & Transducers Journal. 105(6): 33-41.

S. Ibrahim, R. G. Green, K. Dutton, K. Evans, R. A. Rahim, and A. Goude. 1999.Optical Sensor Configurations for Process Tomography. Measurement Science and Technology. 10(11): 1079-1086.

S. M. Din, A. Azmi, C. P. Song, R. A. Rahim, and L. P. Ling. 2014.Electric Potential of Various 4-electrode Segmentation Excitation for Electrical Capacitance Tomography System. Jurnal Teknologi. 69(8): 35-38.

S. M. Din, N. A. M. Razali, Aizat Azmi, C. P. Song, R. A. Rahim, and L. P. Ling. 2015. Comparison of Single and Segmented Excitation of Electrical Capacitance Tomography. IEEE 10th Asian Control Conference 2015. Kota Kinabalu, Sabah, Malaysia. 31 May-3 June 2015. 761-766.

Z. Fan and R. X. Gao. 2011. Enhancement of Measurement Efficiency for Electrical Capacitance Tomography. IEEE Transactions on Instrumentation and Measurement. 60(5): 1699-1708.

K.-J. J. Alme and S. Mylvaganam. 2007. Comparison of Different Measurement Protocols in Electrical Capacitance Tomography Using Simulations. IEEE Transactions on Instrumentation and Measurement. 56(6): 2119-2130.

A. M. Olmos, M. A. Carvajal, D. P. Morales, A. García, and A. J. Palma. 2008. Development of an Electrical Capacitance Tomography System Using Four Rotating Electrodes. Sensors and Actuators A: Physical. 148(2): 366-375.

E. Dubrofsky and R. J. Woodham. 2008. Combining Line and Point Correspondences for Homography Estimation. 4th International Symposium on Visual Computing. (11): 202-213.

M. A. Zimam, E. J. Mohamad, R. A. Rahim, and L. P. Ling. 2011.Sensor Modelling of ECT using COMSOL Mutiphysics. Jurnal Teknologi. 55(2): 33-47.

W. Xiong. 2010. Applications of COMSOL Multiphysics Software to Heat Transfer Processes. Master Degree, Department of Industrial Management, Arcada University of Applied Sciences.

Downloads

Published

2015-11-24

How to Cite

ELECTRICAL POTENTIAL AND ELECTRICAL FIELD DISTRIBUTION OF SQUARE ELECTRICAL CAPACITANCE TOMOGRAPHY. (2015). Jurnal Teknologi (Sciences & Engineering), 77(17). https://doi.org/10.11113/jt.v77.6469