A THEORETICAL FRAMEWORK OF DATA QUALITY IN PARTICIPATORY SENSING: A CASE OF MHEALTH
DOI:
https://doi.org/10.11113/jt.v77.6500Keywords:
Data quality, information uncertainty, participatory sensing, mHealthAbstract
Research in data quality is important in participatory sensing area to provide integrity of the data contributed by participants in mHealth participatory campaign. Many factors can influence the integrity of data contribution. One of major concerns is the possibility of data truthfulness of being uncertain due to incompleteness, imprecision, vagueness, and fragmentary. In participatory sensing, the interpretation of data quality is rather loose and there is no established theoretical framework that represents the elements of data quality in mHealth participatory sensing system. Â Therefore, the objective of this paper is two-fold: First, to investigate the variables of data quality that suits participatory sensing system. Second to propose a theoretical framework of data quality in mHealth participatory sensing. The finding will serve a guideline of data quality in mhealth participatory sensing.
References
. Anawar, S., Yahya, S., Ananta, G. P., Abidin, Z. Z., & Ayop, Z. 2013. Conceptualizing Autonomous Engagement in Participatory Sensing Design: A Deployment for Weightloss Self Monitoring Campaign. In Proceeding of IEEE Conference on e-Learning, e-Management, and e-Service, IC3E 2013, Kuching, Malaysia.
. Anawar, Syarulnaziah, and Saadiah Yahya. 2013. Empowering Health Behaviour Intervention Through Computational Approach for Intrinsic Incentives in Participatory Sensing Application. Research and Innovation in Information Systems (ICRIIS), 2013 International Conference on. IEEE.
. Antifakos, S., Schwaninger, A., & Schiele, B. 2004. Evaluating the Effects of Displaying Uncertainty in Context-Aware Applications. 54–69.
. Arvidson. 2012.
. Berztiss, A. T. 2002. Uncertainty Management.
. Burke, J, Estrin, D, Hansen, M, Parker, A, Ramanathan, N, Reddy, S, Srivastava, M B. 2006. Participatory Sensing. Papers. Center for Embedded Network Sensing, UC Los Angeles. 1-5.
. Coppi, R. 2008. Management of Uncertainty in Statistical Reasoning: The Case of Regression Analysis. International Journal of Approximate Reasoning. 47(3): 284-305. doi:10.1016/j.ijar.2007.05.011.
. Dragos, V. 2013. An Ontological Analysis of Uncertainty in Soft Data. 1566-1573.
. DeLone, W. and McLean, E. 1992. Information Systems Success: The Quest for the Dependent Variable. Inform. Syst. Res. 3(1): 60-95.
. Even, A. Shankaranaryanan, l. 2009. Dual Assessment of Data Quality in Customer Databases. ACM Journal of Data and Information Quality. 1(3). 15: 1-15: 29.
. Ganti, R, K. 2011. Mobile Crowdsensing : Current State and Future Challenges. IEEE Communication Magazine. November. 32-39.
. Goldman, J, Shilton, K, Burke, J. 2009. Participatory Sensing: A Citizen-Powered Approach to Illuminating the Patterns that Shape Our World. Foresight & Governance Project, White Paper. 1-15.
. Huang, K, L, Kanhere, S, S, Hu, W. 2014. On the Need for a Reputation System in Mobile Phone Based Sensing. Ad Hoc Networks. Elsevier B.V. 12(1): 130-149.
. Kiureghian, A, D, Ditlevsen, O. 2009. Aleatory or Epistemic? Does It Matter? Structural Safety. Elsevier Ltd. 31(2): 105-112.
. Lalmas, M. 1998. Information Retrieval and Dempster-Shafer ’ s Theory of Evidence. 157-176.
. Li, Y., Chen, J., & Feng, L. 2013. Dealing with Uncertainty: A Survey of Theories and Practices. IEEE Transactions on Knowledge and Data Engineering. 25(11): 2463-2482. doi:10.1109/TKDE.2012.179.
. Liang, L. R., Looney, C. G., & Mandal, V. 2011. Fuzzy-Inferenced Decisionmaking Under Uncertainty and Incompleteness. Applied Soft Computing. 11(4): 3534-3545. doi:10.1016/j.asoc.2011.01.026.
. MacEachren, a. M., Roth, R. E., O’Brien, J., Li, B., Swingley, D., & Gahegan, M. 2012. Visual Semiotics & Uncertainty Visualization: An Empirical Study. IEEE Transactions on Visualization and Computer Graphics, 18(12): 2496-2505. doi:10.1109/TVCG.2012.279.
. McNaull, J, Augusto, J, C, Mulvenna, M, McCullagh, P. 2012. Data and Information Quality Issues in Ambient Assisted Living Systems. Journal Data and Information Quality. 4(1). DOI = 10.1145/2378016.2378020.
. Nottelmann, H., & Fuhr, N. 2003. From Uncertain Inference to Probability of Relevance for Advanced IR Applications. 235-250.
. Omerovic, A., & Stølen, K. 2011. A Practical Approach to Uncertainty Handling and Estimate Acquisition in Model-based Prediction of System Quality. 4(1): 55-70.
. Pratiwi, A, S, Anawar, S. 2014. Resolving Uncertainty Information Using Case-Based Reasoning Approach in Weight-loss Participatory Sensing Campaign. Recent Advances on Soft Computing and Data Mining. Advance in Intelligent Systems and Computing 287. DOI: 10/1007/978-3-319-07692-8_52. Springer.
. Reddy, S, Burke, J, Estrin, D, Hansen, M, Srivastava, M. 2007. A Framework for Data Quality and Feedback in Participatory Sensing. SenSys'07. ACM 1-59593-763-6/07/0011. Sydney, Australia.
. Ucla, C. 2011. 2 . 2 Participatory Sensing ( PART ). Center for Embedded Networked Sensing. 25-72.
. Wolf, G., Kalavagattu, A., Khatri, H., Balakrishnan, R., Chokshi, B., Fan, J., Kambhampati, S. 2009. Query Processing Over Incomplete Autonomous Databases: Query Rewriting Using Learned Data Dependencies. The VLDB Journal. 18(5): 1167-1190. doi:10.1007/s00778-009-0155-0.
. Xu, C., Cheung, S. C., Chan, W. K., & Ye, C. 2010. Partial Constraint Checking for Context Consistency in Pervasive Computing. ACM Transactions on Software Engineering and Methodology. 19(3): 1-61. doi:10.1145/1656250.1656253.
. Yang, H, F, Zhang, J, Roe, P. 2011. Using Reputation Management in Participatory Sensing for Data Classification. Procedia Computer Science. DOI: 10.1016/j.procs.2011.07.026. ISBN: 1877-0509. ISSN: 18770509. 190-197.
. Yu, R, Liu, R, Wang, X, Cao, J. 2014. Improving Data Quality with an Accumulated Reputation Model in Participatory Sensing Systems. Sensors. 14. DOI: 10.3390/s140305573. ISBN: 8624836875. ISSN: 14248220. 5573-5594.
. Zhang, S., Chen, Q., & Yang, Q. 2010. Acquiring Knowledge from Inconsistent Data Sources Through Weighting. Data & Knowledge Engineering. 69(8): 779-799. doi:10.1016/j.datak.2010.03.001.
. Zhang, W., Lin, X., Pei, J., & Zhang, Y. 2008. Managing Uncertain Data: Probabilistic Approaches. 2008 The Ninth International Conference on Web-Age Information Management, 405–412. doi:10.1109/WAIM.2008.42.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.