COMPUTATION AND PERFORMANCE ANALYSIS OF DOUBLE STAGE FILTER FOR IMAGE PROCESSING

Authors

  • Teo Chee Huat Department of Electronic Engineering, Faculty of Electronics and Computer Engineering, Universiti Teknikal Malaysia Melaka, Melaka, Malaysia
  • Nurulfajar Abdul Manap Department of Electronic Engineering, Faculty of Electronics and Computer Engineering, Universiti Teknikal Malaysia Melaka, Melaka, Malaysia
  • Masrullizam Mat Ibrahim Department of Electronic Engineering, Faculty of Electronics and Computer Engineering, Universiti Teknikal Malaysia Melaka, Melaka, Malaysia

DOI:

https://doi.org/10.11113/jt.v77.6510

Keywords:

Hybrid stereo matching, block matching, double stage filter, dynamic programming, computation, segmentation, merging, filtering

Abstract

Double Stage Filter (DSF) is a hybrid stereo matching algorithm which consists of basic block matching and dynamic programming algorithms, basic median filtering and new technique of segmentation. The algorithm acquire disparity maps which will be analyzed by using evaluation functions such as PSNR, MSE and SSIM. The computation of DSF and existing algorithms are presented in this paper. The Phase 2 in DSF is to remove the unwanted aspects such as depth discontinuities and holes from occlusion from the raw disparity map. Segmentation, merging and median filtering are the major parts for post processing of DSF algorithm. From the results of evaluation functions, the disparity maps attained by DSF is closer to the ground truth compared to other algorithms while its computation takes only few seconds longer than DP algorithm but its capable to obtain better results of disparity map.

References

D. Scharstein and R. Szeliski. 2002. A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms. Proc. IEEE Work. Stereo Multi-Baseline Vis. (SMBV 2001). 1: 131-140.

Q. Yang, P. Ji, D. Li, S. Yao, and M. Zhang. 2014. Fast Stereo Matching Using Adaptive Guided Filtering. Image Vis. Comput. 32(3): 202-211.

D. Chen, M. Ardabilian, and L. Chen. 2013. A Novel Trilateral Filter based Adaptive Support Weight Method for Stereo Matching. Procedings Br. Mach. Vis. Conf. 2013. 96.1-96.11,

Y. S. Heo, K. M. Lee, and S. U. Lee. 2011. Robust Stereo Matching Using Adaptive Normalized Cross-Correlation. IEEE Trans. Pattern Anal. Mach. Intell. 33(4): 807-822.

Z. Ma and K. He. 2013. Constant Time Weighted Median Filtering for Stereo Matching and Beyond. 2-9.

P. Fua. 1993. A Parallel Stereo Algorithm that Produces Dense Depth Maps and Preserves Image Features. Mach. Vis. Appl. 6(1): 35-49.

W. Li and B. Li. 2008. Virtual View Synthesis with Heuristic Spatial Motion. Proc.- Int. Conf. Image Process. ICIP. 1: 1508-1511.

C. Zhou, A. Troccoli, and K. Pulli. 2012. Robust Stereo with Flash and No-Flash Image Pairs. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 342-349.

A. F. Bobick and S. S. Intille. 1999. Large Occlusion Stereo. 33(3): 181-200.

F. Calakli, A. O. Ulusoy, M. I. Restrepo, G. Taubin, and J. L. Mundy. 2012. High Resolution Surface Reconstruction from Multi-View Aerial Imagery. Proc.-2nd Jt. 3DIM/3DPVT Conf. 3D Imaging, Model. Process. Vis. Transm. 3DIMPVT 2012. 25-32.

H. Jaspers and H. Wuensche. 2014. Fast and Robust B-Spline Terrain Estimation for Off-Road Navigation with Stereo Vision. 140-145.

Y. C. Wang, C. P. Tung, and P. C. Chung. 2013. Efficient Disparity Estimation Using Hierarchical Bilateral Disparity Structure Based Graph Cut Algorithm with a Foreground Boundary Refinement Mechanism. IEEE Trans. Circuits Syst. Video Technol. 23(5): 784-801.

N. Anantrasirichai, C. N. Canagarajah, D. W. Redmill, and D. R. Bull. 2006. Dynamic Programming for Multi-View Disparity/Depth Estimation Abstract. 1: 269-272.

X. Tan, C. Sun, X. Sirault, R. Furbank, and T. D. Pham. 2014. Stereo Matching Using Cost Volume Watershed and Region Merging. Signal Process. Image Commun. 29(10): 1-13.

A. Donate, X. Liu, and E. G. Collins. 2011. Efficient Path-based Stereo Matching with Subpixel Accuracy. IEEE Trans. Syst. Man, Cybern. Part B Cybern. 41(1): 183-195.

M. Sabatini, R. Monti, P. Gasbarri, and G. B. Palmerini. 2013. Adaptive and Robust Algorithms and Tests for Visual-Based Navigation of a Space Robotic Manipulator. Acta Astronaut. 83: 65-84.

P. M. Jodoin, M. Mignotte, and C. Rosenberger. 2007. Segmentation framework based on label field fusion. IEEE Trans. Image Process. 16(10): 2535-2550.

L. Di Stefano, M. Marchionni, and S. Mattoccia. 2004. A Fast Area-based Stereo Matching Algorithm. Image Vis. Comput. 22(12): 983-1005.

F. Tombari, L. Di Stefano, S. Mattoccia, A. Mainetti, and D. Arces. 2010. A 3D Reconstruction System Based on Improved Spacetime Stereo. December: 7-10.

M. Debella-gilo and A. Kääb. 2011. Locally Adaptive Template Sizes For Matching Repeat Images Of Mass. Inst. Geosci, Univ. Oslo, Oslo, Norw. 1: 4281-4284.

S.-Y. Lee, J.-Y. Sim, C.-S. Kim, and S.-U. Lee. 2013. Correspondence Matching of Multi-View Video Sequences Using Mutual Information Based Similarity Measure. IEEE Trans. Multimed. 15(8): 1719-1731.

X. Mi. 2012. Stereo Matching based on Global Edge Constraint and Variable Window Propagation. Cisp: 936-940.

G. P. Fickel, C. R. Jung, T. Malzbender, R. Samadani, and B. Culbertson. 2013. Stereo Matching and View Interpolation Based on Image Domain Triangulation. IEEE Trans. Image Process. 22(9): 3353-3365.

N. A. Manap and J. J. Soraghan. 2012. Disparity Refinement Based on Depth Image Layers Separation for Stereo Matching Algorithms. J. Telecommun. Electron. Comput. Eng. 4(1).

J. Zhao and J. Katupitiya. 2007. A Multi-Window Stereo Vision Algorithm with Improved Performance at Object Borders. Proc. 2007 IEEE Symp. Comput. Intell. Image Signal Process. CIISP 2007. Ciisp: 66-71.

R. a. Hamzah, K. a a Aziz, and a. S. M. Shokri. 2012. A Pixel to Pixel Correspondence and Region of Interest in Stereo Vision Application. 2012 IEEE Symp. Comput. Informatics, Isc. 2012. 193-197.

O. Veksler. 2005. Stereo Correspondence by Dynamic Programming on a Tree. 2005 IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2(1): 384-390.

L. Zhu, Y. Chen, Y. Lin, C. Lin, and A. Yuille. 2009. Recursive Segmentation and Recognition Templates for 2D Parsing. Adv. Neural Inf. Process. Syst. 21. 34(2): 1985-1992.

I. Gerace and R. Pandolfi. 2003. A Color Image Restoration with Adjacent Parallel Lines Inhibition. Proc.- 12th Int. Conf. Image Anal. Process. ICIAP 2003. 391-396.

A. Gharib and A. Harati. 2012. Toward Application of Extremal Optimization Algorithm in Image Segmentation. 167-172.

G. Vogiatzis, C. Hernández, P. H. S. Torr, and R. Cipolla. 2007. Multiview Stereo Via Volumetric Graph-Cuts and Occlusion Robust Photo-Consistency. IEEE Trans. Pattern Anal. Mach. Intell. 29: 2241-2246.

D. Min and K. Sohn. 2010. An Asymmetric Post-Processing For Correspondence Problem. Signal Process. Image Commun. 25(2): 130-142.

C. Cassisa. 2010. Local vs Global Energy Minimization Methods: Application to Stereo Matching. 2010 IEEE Int. Conf. Prog. Informatics Comput. 2: 678-683.

H. Proenc, C. Neves, and G. Santos. 2013. Segmenting the Periocular Region using a Hierarchical Graphical Model Fed by Texture/Shape Information and Geometrical Constraints.

L. Wang, G. Liu, and Q. Dai. 2014. Optimization of Segmentation Algorithms Through Mean-Shift Filtering Preprocessing. 11(3): 622-626.

C. C. Pham and J. W. Jeon. 2013. Domain Transformation-Based Efficient Cost Aggregation for Local Stereo Matching. IEEE Trans. Circuits Syst. Video Technol. 23(7): 1119-1130.

A. Hosni, C. Rhemann, M. Bleyer, C. Rother, and M. Gelautz. 2013. Fast Cost-Volume Filtering for Visual Correspondence and Beyond. IEEE Trans. Pattern Anal. Mach. Intell. 35(2): 504-511.

H. Mohammadzade and D. Hatzinakos. 2013. Iterative Closest Normal Point for 3D Face Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(2): 381-397.

Tsukuba dataset from Middlebury Website Page, Retrieved on April, 3, 2015 from http://vision.middlebury.edu/stereo/data/.

C. S. Panchal and A. B. Upadhyay. 2014. Depth Estimation Analysis Using Sum of Absolute Difference Algorithm. 6761-6767.

A. Khaparde, A. Naik, M. Deshpande, S. Khar, K. Pandhari, and M. Shewale. 2013. Performance Analysis of Stereo Matching Using Segmentation Based Disparity Map. c: 38-43.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. 2004. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Process. 13(4): 600-12.

Y. Tao, H. Lin, F. Dong, C. Wang, G. Clapworthy, and H. Bao. 2012. Structure-aware Lighting Design for Volume Visualization. IEEE Trans. Vis. Comput. Graph. 18(12): 2372-2381.

P. Spector, “An Introduction to Matlab. 1996. Stat. Comput. Facil. Dep. Stat. Univ. California, Berkeley.

Downloads

Published

2015-11-30

How to Cite

Chee Huat, T., Abdul Manap, N., & Mat Ibrahim, M. (2015). COMPUTATION AND PERFORMANCE ANALYSIS OF DOUBLE STAGE FILTER FOR IMAGE PROCESSING. Jurnal Teknologi, 77(19). https://doi.org/10.11113/jt.v77.6510