EXTRACTING KNOWLEDGE FROM ENGLISH TRANSLATED QURAN USING NLP PATTERN

Authors

  • Rohana Ismail Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin, Kuala Terengganu, Terengganu, Malaysia
  • Zainab Abu Bakar Faculty of Computer and Mathematical Sciences, Universiti Teknologi Mara, Shah Alam, Selangor, Malaysia
  • Nurazzah Abd. Rahman Faculty of Computer and Mathematical Sciences, Universiti Teknologi Mara, Shah Alam, Selangor, Malaysia

DOI:

https://doi.org/10.11113/jt.v77.6515

Keywords:

Ontology, NLP pattern, Quran

Abstract

Ontology is able to represent knowledge from an abstract view into formal semantics. It is essential for the success of knowledge-based systems because it has been used to share vocabulary, discover new knowledge, flexible access of knowledge and easy integration of knowledge. Currently, Ontology from Quran is not complete and most of the development is done manually. Manual development of ontology is time consuming and labor intensive task. Hence, the automatic or semi-automatic ontology development which is a field of Ontology Learning is needed to efficiently extract knowledge and transform it into Ontology. Current techniques employed in Ontology Learning are based on statistical and Natural Language Processing. This paper provides result from an experiment to extract knowledge using the existing Natural Language Processing (NLP) Pattern based on the Ontology Learning approach. Initial experiment shows that the pattern could be used to extract knowledge in terms of relations that exist in English translated Quran. In addition, NLP could also use to identify new pattern that can be further explored.

References

H. Kettani. 2010. World Muslim Population. Proc. 8th Hawaii Int. Conf. Arts Humanit. Honolulu, Hawaii, 2010.

N. Abbas. 2009. Quran’Search for a Concept'Tool and Website.

S. Saad. 2013. Ontology Learning and Population Techniques for English Extended Quranic Translation Text.

S. Baqai, A. Basharat, H. Khalid, A. Hassan, and S. Zafar. 2009. Leveraging Semantic Web Technologies for Standardized Knowledge Modeling and Retrieval from the Holy Qur'an and Religious Texts.

P. Cimiano, J. Völker, and R. Studer. 2006. Ontologies on Demand?-A Description of the State-of-the-Art, Applications, Challenges and Trends for Ontology Learning from Text. Information, Wiss. und Prax. 57: 315-320,

K. Hassanzadeh, M. Reformat, W. Pedrycz, I. Jamal, and J. Berezowski. 2013. T2R: System for Converting Textual Documents into RDF Triples. IEEE/WIC/ACM Int. Jt. Conf. Web Intell. Intell. Agent Technol. Nov. 2013. 221-228.

M. Al-yahya and H. Al-khalifa. 2010. An Ontology Model for Representing Semantic Lexicons: An Application on Time Nouns in the Holy Quran. 35(2): 21-35.

K. Dukes. 2014. Ontology of Quran Concepts. [Online]. Available: http://corpus.quran.com/ontology.jsp. [Accessed: 12-Jun-2014].

D. Allemang and J. Hendler. 2007. Semantic Web for the Working Ontologiest.

K. Byrne and E. Klein. 2010. Automatic Extraction of Archaeological Events from Text. Proc. 37th Int. Conf. Williamsburg, Virginia, United States Am. 1-16.

J. Fan and A. Kalyanpur. 2012. Automatic Knowledge Extraction From Documents. 56(3): 1-10.

A. Maedche and S. Staab. 2001. Ontology Learning For The Semantic Web. IEEE Intell. Syst. 16: 72-79.

O. Etzioni, A. Fader, J. Christensen, and S. Soderland. 2011. Open Information Extraction: The Second Generation. 3-10.

D. C. Wimalasuriya and D. Dou. 2010. Ontology-Based Information Extraction: An Introduction and a Survey of Current Approaches. J. Inf. Sci. 36(3): 306-323.

V. Uren, P. Cimiano, J. Iria, S. Handschuh, M. Vagasvera, E. Motta, and F. Ciravegna. 2006. Semantic Annotation For Knowledge Management: Requirements and A Survey Of The State Of The Art. Web Semantics: Science, Services and Agents on the World Wide Web. 4: 14-28.

P. Buitelaar, P. Cimiano, and B. Magnini. 2004. Ontology Learning from Text: An Overview. 1-10.

W. Wong, W. Liu, and M. Bennamoun. 2012. Ontology Learning from Text. ACM Comput. Surv. 44(4): 1-36.

R. Iqbal and A. Mustapha. 2013. An Experience Of Developing Quran Ontology With Contextual Information Support. 7(4): 333-343.

A. R. Yauri, R. A. Kadir, A. Azman, M. Azrifah, and A. Murad. 2013. Quranic Verse Extraction base on Concepts using OWL-DL Ontology. 6(23): 4492-4498.

H. U. Khan, S. M. Saqlain, M. Shoaib, and M. Sher. 2013. Ontology Based Semantic Search in Holy Quran. 2(6).

M. Fernandez, A. Gomez-Perez, and N. Juristo. 1997. METHONTOLOGY: From Ontological Art Towards Ontological Engineering. 33-40.

M. Gruninger and M. S. Fox. 1995. Methodology for the Design and Evaluation of Ontologies.

A. Gómez-pérez and D. Manzano-macho. 2003. Deliverable 1. 5: A Survey of Ontology Learning Methods aAnd Techniques Ontoweb Consortium.

A. Maedche and S. Staab. 2001. Ontology Learning for the Semantic Web. IEEE Intell. Syst.

M. Shamsfrad and A. A. Barforoush. 2003. The State of the Art in Ontology Learning: A Framework for Comparison. Knowl. Eng. Rev. 18: 293-316.

M. Shamsfard and A. A. Barforoush. 2004. Learning Ontologies from Natural Language Texts. Int. J. Hum. Comput. Stud. 60(1): 17-63.

X. Jiang and A. H. Tan. 2010. CRCTOL: A Semantic-Based Domain Ontology Learning System. J. Am. Soc. Inf. Sci. Technol. 61: 150-168.

J. Cimiano, Philipp and Völker. 2005. A Framework for Ontology Learning and Data-Driven Change Discovery. In Natural Language Processing and Information Systems. 227-238.

D. Faure and C. Nedellec. 1999. Knowledge Acquisition Of Predicate Argument Structures From Technical Texts Using Machine Learning: The System ASIUM. Knowl. Acquis. Model. Manag.

A. Maedche and S. Staab. 2000. The Text-To-Onto Ontology Learning Environment. Softw. Demonstr. ICCS-2000, Eight Int. Conf. Concept. Struct.

X. Jiang and A. Tan. 2005. Mining Ontological Knowledge from Domain-Specific Text Documents. Fifth IEEE Int. Conf. Data Min. 665-668.

D. Maynard, Y. Li, and W. Peters. 2008. Nlp Techniques For Term Extraction and Ontology Population. Proc. 2008 Conf. Ontol. Learn. Popul. Bridg. Gap between Text Knowl. 107-127.

S. Mokarizadeh, P. Küngas, and M. Matskin. 2013. Ontology Acquisition From Web Service Descriptions. Proc. 28th Annu. ACM Symp. Appl. Comput.-SAC ’13. 325.

S. Deerwester, S. T. Dumais, G. W. Furnas, and T. K. Landauer. 1990. Indexing by Latent Semantic Analysis. J. Am. Soc. Inf. Sci. 41(6): 391-407.

G. Salton and C. Buckley. 1988. Term-weighting Approaches in Automatic Text Retrieval. Inf. Process. Manag.

J. Ponte and W. Croft. 1998. A Language Modeling Approach To Information Retrieval. In Proceedings Of The 21st Annual International ACM SIGIR Conference On Research And Development In Information Retrieval. 275-281.

R. Navigli. 2009. Word Sense Disambiguation: A Survey. 41(2).

M. A. Hearst, “Automatic Acquisition of Hyponyms from Large Text Corpora,†pp. 23–28, 1992.

O. Etzioni, A. Popescu, D. S. Weld, D. Downey, and A. Yates. 2004. Web-Scale Information Extraction in KnowItAll ( Preliminary Results ). 100-110.

S. Saad, N. Salim, and H. Zainal. 2010. Towards Context-Sensitive Domain of Islamic Knowledge Ontology Extraction. 3(1): 197-206.

M. Fernandez, Z. Zhang, V. Lopez, V. Uren, and E. Motta, 2011. Ontology Augmentation: Combining Semantic Web and Text Resources. 9-16.

S. Saad, N. Salim, and H. Zainal. 2009. Islamic Knowledge Ontology Creation.

S. Saad, N. Salim, and H. Zainal. 2009. Pattern Extraction For Islamic Concept. 333-337.

Downloads

Published

2015-11-30

How to Cite

EXTRACTING KNOWLEDGE FROM ENGLISH TRANSLATED QURAN USING NLP PATTERN. (2015). Jurnal Teknologi (Sciences & Engineering), 77(19). https://doi.org/10.11113/jt.v77.6515