INFLUENCE OF HEAT TRANSFER ON THE MHD STAGNATION POINT FLOW OF A POWER LAW FLUID WITH CONVECTIVE BOUNDARY CONDITION

Authors

  • Shah Jahan Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak, Malaysia
  • Hamzah Sakidin Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak, Malaysia

DOI:

https://doi.org/10.11113/jt.v77.6552

Keywords:

Convective boundary conditions, power-law fluid, heat transfer

Abstract

In this article, we examined the impact of heat transfer on the magnetohydrodynamic (MHD) stagnation point flow of a non-Newtonian power- law fluid with convective boundary condition. By using suitable similarity transformations, coupled nonlinear partial differential equations are transformed to ordinary differential equations. Then solved the resulting equations with Homotopy analysis method.  Interesting flow parameters such as MHD , stagnation parameter  convective parameter  are discussed graphically. Convergence is checked at 20th order of approximation. Numerical values of physical interested parameter such as local Nusselt number are also tabulated.

References

Singh, G., Sharma, P. R. and Chamkha, A. J. 2010. Effect of Volumetric Heat Generation/Absorption On Mixed Convection Stagnation Point Flow On An Isothermal Vertical Plate In Porous Media. Int. J. Industrial Mathematics. 2(2): 59-71.

Hiemenz, K. 1911. Die Grenzschicht An Einem In Den Gleichformigen Fussigkeitsstorm Eingetauchten Garden Kreiszylinder. Dinglers Polym. J. 326(1911): 321-410.

Homann, F. 1936. Der Einflub grober Zahigkeit bei der Stromung um den Zylinder und um die Kugel, Z. Angew. Math. Mech. 16: 153-164.

Nazar, R., Amin, N., Filip D. and Pop, I. 2004. Stagnation Point Flow Of A Micropolar Fluid Towards A Stretching Sheet. Int. J. Non Linear Mech. 39(2004): 1227-1235.

Lok, Y. Y., Phang, P., Amin N., and Pop, I. 2003. Unsteady Boundary Layer Flow Of A Micropolar Fluid Near The Forward Stagnation Point Of A Plane Surface. Int. J. Eng. Sci. 41: 173-186.

Nadeem, S., Abbasbandy S., and Hussain, M. 2009. Series Solutions Of Boundary Layer Flow Of A Micropolar Fluid Near The Stagnation Point Towards A Shrinking Sheet. Zeitschrift für Naturforschung A. 64a: 575-582.

Andersson, H. I. and Dandapat, B. S. 1991. Flow of a Power-Law Fluid Over A Stretching Sheet, Stability Appl. Anal. Continuous Media (SAACM), Italy. 1: 339-347.

Crane, L. J. 1970. Flow Past A Stretching Plate. Zeit. Angew. Math. Phys. 21: 645-647

Andersson, H. I., Bech K. H., and Dandapat, B. S. 1992. Magnetohydrodynamic Flow Of A Power-Law Fluid Over A Stretching Sheet. Int. J. Non-Linear Mech. 27: 929-936.

Mahapatra, T. R., Nandy S. K. and Gupta, A. S. 2009. Analytical Solution Of Magnetohydrodynamic Stagnation-Point Flow Of A Power-Law Fluid Towards A Stretching Surface. App. Math. and Comput. 215: 1696-1710.

Mahapatra, T. R., Nandy S. K., and Gupta, A. S. 2009. Magnetohydrodynamic Stagnation-Point Flow Of A Power-law Fluid Towards A Stretching Surface. Int. J. NonLinear Mech. 44: 123-128.

Mahapatra, T. R., Nandy S. K., and Gupta, A. S, 2012. Heat Transfer In The Magnetohydrodynamic Flow Of A Power-Law Fluid Past A Porous Flat Plate With Suction Or Blowing. Int. Communi. Heat Mass Transf. 39: 17-23.

Bataller, R. C. 2008. Similarity Solutions For Flow And Heat Transfer Of A Quiescent Fluid Over A Nonlinearly Stretching Surface. J. Mater. Process Technol. 203: 176-183.

Makinde, O. D. and Aziz, A. 2010. MHD Mixed Convection From A Vertical Plate Embedded In A Porous Medium With A Convective Boundary Condition. Int. J. Therm. Sci. 49: 1813-1820.

Yao, S., Fang T. and Zhong, Y. 2011. Heat Transfer Of A Generalized Stretching/Shrinking Wall Problem With Convective Boundary Conditions. Commun. Nonlinear Sci. Numer. Simulat. 16: 752-760.

Ishak, A. 2010. Similarity Solutions For Flow and Heat Transfer Over A Permeable Surface With Convective Boundary Conditions. Appl. Math. Comput. 217: 837-842.

Liao, S. J. 2003. Beyond Perturbation: Introduction To Homotopy Analysis Method. Chapman and Hall, CRC Press, Boca Raton.

Liao, S. J. 2009. A General Approach To Get Series Solution Of Non-Similarity Boundary Layer Flows. Commun. Nonlinear. Sci. Numer. Simulat. 14: 2144-2159.

Liao, S. J. 2009. Notes on the Homotopy Analysis Method: Some Definitions and Theorems. Commun. Nonlinear. Sci. Numer. Simulat. 14: 983-997.

Abbasbandy, S. 2009. Solitary Wave Solutions To The Modified Form Of Camassa--Holm Equation By Means Of The Homotopy Analysis Method. Chaos, Solitons and Fractals. 39: 428-435.

Downloads

Published

2015-12-01

How to Cite

INFLUENCE OF HEAT TRANSFER ON THE MHD STAGNATION POINT FLOW OF A POWER LAW FLUID WITH CONVECTIVE BOUNDARY CONDITION. (2015). Jurnal Teknologi (Sciences & Engineering), 77(20). https://doi.org/10.11113/jt.v77.6552