FEASIBILITY STUDY OF USING TELESCOPIC INVERTED PENDULUM MODEL TO REPRESENT A THREE LINK SYSTEM FOR SIT TO STAND MOTION

Authors

  • Muhammad Fahmi Miskon Universiti Teknikal Malaysia Melaka, Malaysia Center of Excellence in Robotics and Industrial Automation
  • Mohd Zaki Ghazali Universiti Teknikal Malaysia Melaka, Malaysia Center of Excellence in Robotics and Industrial Automation
  • Mohd Bazli Bahar Universiti Teknikal Malaysia Melaka, Malaysia Center of Excellence in Robotics and Industrial Automation
  • Chew Xiao Lin Universiti Teknikal Malaysia Melaka, Malaysia Center of Excellence in Robotics and Industrial Automation
  • Fariz Ali Universiti Teknikal Malaysia Melaka, Malaysia Center of Excellence in Robotics and Industrial Automation

DOI:

https://doi.org/10.11113/jt.v77.6555

Keywords:

Telescopic Inverted Pendulum, Sit to Stand, three-link model

Abstract

Sit to stand (STS) is a very challenging motion for any humanoid robotic system. In humanoid robotics field, the STS motion on the sagittal plane can be predicted using three-link robot inverse kinematic and dynamic model. However, a three-link model is complicated and requires high computational resource to compute. Hence, in this paper a much simpler model namely telescopic inverted pendulum is proposed. The objective of this project is to model and validate sit to stand motion of humanoid robot using telescopic inverted pendulum model. In order to validate the model, simulated joint torques using both three-link and TIPS model are compared using MATLAB software. Result shows that there is a linear relationship between Telescopic Inverted Pendulum with the 3 Link model thus, it is feasible to use TIPS to represent STS motion of a three-link multi-segment robot.

References

O. C. Jr., Y. Hirata, Z. Wang, and K. Kosuge. 2006. Approach in Assisting a Sit-to-Stand Movement Using Robotic Walking Support System, 2006 IEEE/RSJ Int. Conf. Intell. Robot. Syst. 4343-4348.

K. a. Strausser and H. Kazerooni. 2011. The Development And Testing Of A Human Machine Interface For A Mobile Medical Exoskeleton. 2011 IEEE/RSJ Int. Conf. Intell. Robot. Syst. 4911-4916.

F. Ali, A. Z. H. Shukor, M. F. Miskon, M. K. M. Nor, and S. I. M. Salim. 2013. 3-D Biped Robot Walking Along Slope With Dual Length Linear Inverted Pendulum Method (DLLIPM). Int. J. Adv. Robot. Syst. 10.

N. L. a Shaari, M. Razmi, B. Razali, M. F. Miskon, and I. S. Isa, 2013. Parameter Study of Stable Walking Gaits for Nao Humanoid Robot. 16-23.

M. Mistry, A. Murai, K. Yamane, and J. Hodgins, Dec. 2010. Sit-to-stand Task On A Humanoid Robot From Human Demonstration. 2010 10th IEEE-RAS Int. Conf. Humanoid Robot. 2: 218–223.

S. Pchelkin, A. Shiriaev, L. Freidovich, U. Mettin, S. Gusev, and W. Kwon, Dec. 2010. Natural Sit-Down And Chair-Rise Motions For A Humanoid Robot. 49th IEEE Conf. Decis. Control. 1136-1141.

M. Sadeghi, M. Emadi Andani, M. Parnianpour, and A. Fattah. 2013. A Bio-Inspired Modular Hierarchical Structure To Plan The Sit-To-Stand Transfer Under Varying Environmental Conditions. Neurocomputing. 118: 311-321.

K. Qi. 2009. Analysis of the State Transition for a Humanoid Robot SJTU-HRI from Sitting to Standing. 1922–1927.

H. Hemami and V. C. Jaswa. 1978. On a Three-Link Model of the Dynamics of Standing up and Sitting down IEEE Trans. Syst. Man. Cybern. 8(2): 115-120.

J. M. Ć, R. Kamnik, V. Zanchi, and M. Munih. 2007. Model Based Inertial Sensing for Measuring the Kinematics of Sit-to- Stand Motion. 8-13.

R. Aissaoui, R. Ganea, and K. Aminian, Apr. 2011, Conjugate Momentum Estimate Using Non-Linear Dynamic Model Of The Sit-To-Stand Correlates Well With Accelerometric Surface Data. J. Biomech. 44(6): 1073-7.

Y. Pai and J. Patton. 1997. Center Of Mass Velocity. 30(4): 1-7.

E. Papa and A. Cappozzo. 1999. A Telescopic Inverted-Pendulum Model Of The Musculo-Skeletal System And Its Use For The Analysis Of The Sit-To-Stand Motor Task. J. Biomech. 32(11): 1205-12.

B. Bahar, M. F. Miskon, N. A. Bakar, A. Z. Shukor, and F. Ali. 2014. Australian Journal of Basic and Applied Sciences. 8(February): 168-182.

H. Robotics. 2014. STS Motion Control using NAO Humanoid Robot. 8(2): 95-108.

P. O. Riley, M. L. Schenkman, R. W. Mann, and W. A. Hodge. 1991. Mechanics of a Constrained Chair-Rise. J. Biomech. 24(1): 77-85.

P. J. Millington, B. M. Myklebust, and G. M. Shambes. 1992. Biomechanical Analysis Of The Sit-To-Stand Motion In Elderly Persons. Arch. Phys. Med. Rehabil. 73: 609-617.

A. Kralj, R. J. Jaeger, and M. Munih. 1990. Analysis Of Standing Up And Sitting Down In Humans: Definitions And Normative Data Presentation. J. Biomech. 23: 1123-1138.

E. Papa and A. Cappozzo. 2000. Sit-to-stand Motor Strategies Investigated In Able-Bodied Young And Elderly Subjects J. Biomech. 33(9): 1113-1122.

J. J. Craig. 2005. Introduction-to-ROBOTICS-craig.pdf. Pearson Education Inc.

K. Wada and T. Matsui. 2013. Optimal Control Model for Reproducing Human Sitting Movements on a Chair and its Effectiveness. J. Biomech. Sci. Eng. 8(2): 164-179.

D. a Winter. 1990. Biomechanics and Motor Control of Human Movement.

Downloads

Published

2015-12-01

How to Cite

FEASIBILITY STUDY OF USING TELESCOPIC INVERTED PENDULUM MODEL TO REPRESENT A THREE LINK SYSTEM FOR SIT TO STAND MOTION. (2015). Jurnal Teknologi, 77(20). https://doi.org/10.11113/jt.v77.6555