PERFORMANCE ANALYSIS FUZZY-PID VERSUS FUZZY FOR QUADCOPTER ALTITUDE LOCK SYSTEM

Authors

  • Hendi Wicaksono University of Surabaya, East Java, Indonesia
  • Yohanes Gunawan University of Surabaya, East Java, Indonesia
  • Arbil Yodinata University of Surabaya, East Java, Indonesia
  • Leonardie Leonardie University of Surabaya, East Java, Indonesia

DOI:

https://doi.org/10.11113/jt.v77.6659

Keywords:

Quadcopter altitude lock system, Fuzzy, Fuzzy-PID controller, YoHe board

Abstract

Mostly quadcopter has a flight controller to receive signal from remote control to control four brushless motor speed. In this paper, the researchers introduced a new control method to make quadcopter altitude lock system using Fuzzy-PID and perform a comparative  performance analysis between the Fuzzy controller and the new Fuzzy-PID controller. Fuzzy controller has ability to solve uncertainty within the system, by incorporating with altitude sensor data. On the other hand, Fuzzy-PID has the ability to gain the target level with Kp, Ki, Kd values controlled. In this paper the researchers present an analysis to compare the control method between Fuzzy and Fuzzy-PID with regards to the stability altitude lock system. The stability of the altitude lock system can be measured by how small the oscillations occurred. Fuzzy control has shown to produce better result than Fuzzy-PID control. Fuzzy control has 14 cm as its average oscillation, while Fuzzy-PID recorded 24 cm as its average oscillation.  

References

B. T. M. Leong, S. M. Low, and M. P.-L. 2012. Ooi, Low-Cost Microcontroller-based Hover Control Design of a Quadcopter. Procedia Eng. 41:458–464.

H. Irawan, Y. G. Yusuf, and H. Wicaksono. 2014. Pengunci Ketinggian Pada QuadCopter Berbasis Kontroler PID Menggunakan Sensor Ultrasonik, in Digital Information & System Conference.

A. Yodinata, Y. Yusuf, and H. Wicaksono. 2014. Hold Altitude Design for QuadCopter Using Barometric BMP085 Based on Fuzzy Controller. in Digital Information & System Conference.

C. Kristanto, Y. G. Yusuf, H. Wicaksono, and R. K. Surabaya. 2014. Desain Simulasi Penjaga Ketinggian QuadCopter Menggunakan T2-Fuzzy Logic Sebagai Sistem Kontrol. in Digital Information & System Conference.

P. Basta. 2012. Quad Copter Flight. California State University.

S. Bouabdallah, P. Murrieri, and R. Siegwart. 2004. Design and control of an indoor micro quadrotor. IEEE Int. Conf. Robot. Autom. Proceedings. ICRA. 04(5): 4393–4398.

L. R. García Carrillo, E. Rondon, a. Sanchez, a. Dzul, R. Lozano, and L. Carrillo. 2010. Stabilization and trajectory tracking of a quad-rotor using vision. J. Intell. 61(1–4): 103–118.

J. Rought, D. Goodhew, J. Sullivan, and A. Rodriguez. 2010. Self-Stabilizing Quad-Rotor Helicopter. no. 2.

L. Burkamshaw. 2010. Towards A Low-Cost Quadrotor Research Platform. Naval PostGraduate School.

C. Canetta and J. Chin. 2007. Quad-Rotor Unmanned Aerial Vehicle. Columbia University,.

J. Domingues. 2009. Quadrotor prototype, Inst. Super. Tec.

A. El, R. Shabayek, C. Demonceaux, O. Morel, and D. Fofi. 2011. Vision Based UAV Attitude Estimation : Progress and Insights. 1–20.

B. Erginer and E. Altuğ, 2012. Design and implementation of a hybrid fuzzy logic controller for a quadrotor VTOL vehicle. Int. J. Control. Autom. Syst. 10(1):61–70.

H. Desa. 2013. Adaptive Hybrid Control Algorithm Design for Attitude Stabilization of Quadrotor ( UAV ). Arch. Des Sci., 66(2): 51–64.

M. I. H. Nour, J. Ooi, and K. Y. Chan, 2007. Fuzzy logic control vs. conventional PID control of an inverted pendulum robot. 2007 Int. Conf. Intell. Adv. Syst. 209–214,

K. C. Vijaykumar Sureshkumar. 2014. Intelligent Fuzzy Flight Control of an Autonomous. AIAA SciTech. January: 1–10.

M. Tomizuka and S. Isaka. 1993. Fuzzy Gain Scheduling of PID Controllers. IEEE Trans. Syst. Man. Cybern. 23(5): 1392–1398.

Downloads

Published

2015-12-11

How to Cite

PERFORMANCE ANALYSIS FUZZY-PID VERSUS FUZZY FOR QUADCOPTER ALTITUDE LOCK SYSTEM. (2015). Jurnal Teknologi, 77(22). https://doi.org/10.11113/jt.v77.6659