AUTOMATIC DEVELOPMENT OF FUZZY MEMBERSHIP FUNCTIONS ON HEPATITIS PATIENTS DATA USING PARTICLE SWARM OPTIMIZATION (PSO)
DOI:
https://doi.org/10.11113/jt.v77.6670Keywords:
Hepatitis, fuzzy system, membership function, particle swarm optimizationAbstract
Information about the status of disease (prognosis) for patients with hepatitis is important to determine the type of action to stabilize and cure this disease. Among some system, fuzzy system is one of the methods that can be used to obtain this prognosis. In the fuzzification process, the determination of the exact range of membership function will influence the calculation of membership degree and of course will affect the final value of fuzzy system. This range and function can usually be formed using intuition or by using an algorithm. In this paper, Particle Swarm Optimization (PSO) algorithm is implemented to form the triangular membership functions in the case of patients with hepatitis. For testing process, this paper conducts four scenarios to find the best combination of PSO parameter values . Based on the testing it was found that the best parameters to form a membership function range for the hepatitis data is about 0.9, 0.1, 2, 2, 100, 500 for inertia max, inertia min, local ballast constant, global weight constant, the number of particles, and maximum iterations respectively. Â
References
B. Karlik. 2011. Hepatitis Disease Diagnosis Using Backpropagation and the Naive Bayes Classifiers. Journal of Science and Technology. 1 (1): 49-62.
World Health Organization. 2002. Hepatitis C. http://www.who.int/csr/disease/hepatitis/Hepc.pdf. Accessed at 22 October 2013.
N. Cutler. 2012. Getting Real About Hepatitis C Prognosis. http://www.hepatitiscentral.com/mt/archives/2012/07/getting_real_ab.html. Accessed 23 October 2013.
E. Dogantekin, Akif D., Derya A. 2009. Automatic Hepatitis Diagnosis System Based on Linear Discriminant Analysis and Adaptive Network Based on Fuzzy Inference System. Expert Systems with Applications. 36 (2009): 11282–11286.
M. Neshat, M. Sargolzaei, A. N. Toosi, A. Masoumi. 2012. Hepatitis Disease Diagnosis Using Hybrid Case Based Reasoning and Particle Swarm Optimization. International Scholarly Research Network. 2012. Article ID 609718, doi:10.5402/2012/609718.
J. S Sartakhti, M. H. Zangooei, K. Mozafari. 2012. Hepatitis Disease Diagnosis Using A Novel Hybrid Method Based On Support Vector Machine and Simulated Annealing (SVM-SSA). Computer Methods and Programs in Biomedicin. 2(2): 570–579.
Debabrata P. K. M. Mandana, Sarbajit P., Debranjan S., Chandan C. 2012. Fuzzy expert system approach for coronary artery disease screening using clinical parameters. Knowledge-Based Systems. 36 (2012): 162–174.
A. Keles, Ay. Keles, U. Yavuz. 2010. Expert System Based on Neuro-Fuzzy Rules for Diagnosis Breast Cancer. Expert Systems with Applications. 38 (2011): 5719–5726.
U. Segundo, J.L. Cuadrado, L.A. Echevarria, T. A. Pérez, D. Buenestado, A. Iruetaguena, R. Barrena, J.M. Pikatza. 2014. Automatic Construction of Fuzzy Inference Systems for Computerized clinical Guidelines and Protocols. Applied Soft Computing 26 (2015): 257–269.
C.C. Yang, N.K. Bose. 2006. Generating fuzzy membership function with self-organizing feature map. Pattern Recognition Letters. 27 (2006): 356–365.
Byung-In Choi, F. Chung-Hoon Rhee. 2008. Interval type-2 fuzzy membership function generation methods for pattern recognition. Information Sciences. 179 (2009): 2102–2122.
S. M. Bai, S. M. Chen. 2008. Automatically constructing grade membership functions of fuzzy rules for students’ evaluation. Expert Systems with Applications. 35 (2008): 1408–1414.
E.P. Kurniawan,. Hashim S.Z.M. 2010. Fuzzy Membership Function Generation using particle Swarm Optimization. International Journal Open Problems Computation Math. 3 (1): 27-41..
A. Almeida,P. Orduña, E.Castillejo, D.López-de-Ipiña, M. Sacristán. 2013. A method for automatic generation of fuzzy membership functions for mobile device’s characteristics based on Google Trends. Computers in Human Behavior. 29 (2013): 510–517.
Y. Fukuyama. 2007. Fundamentals of Particle Swarm Optimization Techniques in Modern Heuristic Optimization Techniques: Theory and Applications to Power Systems. John Wiley & Sons, Inc, Hoboken, NJ, USA.
V. Novak, I. Perfilieva, J. Mockor. 1999. Mathematical Principle of Fuzzy Logic. Kluwer Academic Publishers, London. http://www.academia.edu/5038898/Mathematical_Principles_of_Fuzzy_Logic.
J. S. R. Jang, C.T. Sun, M. Eiji. 1997. Neuro-Fuzzy and Soft Computing. Prentice Hall, New Jersey, USA.
S. Kusumadewi, H. Purnomo. 2004. Aplikasi Logika Fuzzy Untuk Pendukung Keputusan. Graha Ilmu, Yogyakarta.
E. E. Omizegba, G.E. Adebayo. 2009. Optimizing Fuzzy Membership Functions Using Particle Swarm Algorithm. Proceedings of IEEE International Conference in Systems, Man, and Cybernetics, IEEE, San Antonio, TX, USA.
B.Chen. 2013. Fuzzy Inference System. http://www.bindichen.co.uk/ post/AI/fuzzy-inference-system.html. Accessed 6 November 2013
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.