DISCOVERY OF POTENTIAL SSR MARKERS THROUGH GENOME WIDE ANALYSIS OF MAIZE B73 GENOME

Authors

  • Rabiatul Adawiah Zainal Abidin Centre for Marker Discovery & Validation, Biotechnology & Nanotechnology Research Centre, Malaysian Agriculture Research Development Institute, MARDI HQ, 43400 Serdang, Selangor, Malaysia
  • Zulkifli Ahmad Seman Centre for Marker Discovery & Validation, Biotechnology & Nanotechnology Research Centre, Malaysian Agriculture Research Development Institute, MARDI HQ, 43400 Serdang, Selangor, Malaysia
  • Shahril Ab Razak Centre for Marker Discovery & Validation, Biotechnology & Nanotechnology Research Centre, Malaysian Agriculture Research Development Institute, MARDI HQ, 43400 Serdang, Selangor, Malaysia
  • Norzihan Abdullah Centre for Marker Discovery & Validation, Biotechnology & Nanotechnology Research Centre, Malaysian Agriculture Research Development Institute, MARDI HQ, 43400 Serdang, Selangor, Malaysia
  • Umi Kalsom Abu Bakar Centre for Marker Discovery & Validation, Biotechnology & Nanotechnology Research Centre, Malaysian Agriculture Research Development Institute, MARDI HQ, 43400 Serdang, Selangor, Malaysia

DOI:

https://doi.org/10.11113/jt.v77.6724

Keywords:

In silico, maize, microsatellite, simple sequence repeats (SSR), SSR development

Abstract

In silico analysis provides an economical approach in the development of simple sequence repeat (SSR) markers through utilization of genome sequences generated from high throughput sequencing platform. In this study, we present the potential SSR markers of maize mining from its reference genome of cultivar B73. In total, 94, 534 putative SSRs were detected in maize reference genome B73. Dinucleotide repeats (57.00%) were found the most frequent repeats in maize genome, followed by trinucleotide (38.90%), tetranucleotide (2.77%), pentanucleotide (0.85%) and hexanucleotide (0.48%) repeats. A total of 2239 primer pairs were successfully designed for experimental validation. Of these, 99 SSR markers were selected for optimization and only 71(71.71%) SSR primer pairs produced DNA amplification products and therefore validated as developed SSR markers for maize. This in silico approach through genome wide analysis of maize genome not only provides rapid discovery and cost effective methods in SSR markers development but also will act as useful tool for genetic diversity and marker-trait association in maize.

References

FAOSTAT 2010. [Online] From: http://faostat3.fao.org/home/E. [Acessed on 8 September 2015].

Ibitoye, D. O. and Akin-Idowu, P. E. 2011. Marker-assisted-selection (MAS): A Fast Track to Increase Genetic Gain in Horticultural Crop Breeding. African Journal Biotechnology. 9(52): 8889-8895.

Duran, C., Singhania, R., Raman, H., Batley, J. and Edwards, D. 2013. Predicting Polymorphic EST-SSRs in Silico. Molecular Ecology Resources. 13: 538-545.

Meilian, T., Kun, W., Lei, W., Mingfang, Y., Zhidan, Z., Jing, X,. Yang, Z., Xuekun, Z., Chunling, F., Jianfeng, X., Lijun, W. and Xingchu, Y. 2014. Developing and Characterising Ricinus Communis SSR Markers by Data Mining of Whole-Genome Sequences. Mol Breeding. 34: 893-904.

Rajender, S., Bharati, P., Mohd, D., Sonia, S., Pradeep, S. and Ravish, C. Mining and Survey of Simple Sequence Repeats In Wheat Wheat Rust Puccinia sp. Bioinformation. 7(6): 291-295.

Susan, R., M., Leonid, T., Yunbi, X., Katarzyna, B., L., Karen, C., Mark, W., Binying, F., Reycel, M., Zhikang, Li., Yongzhong, X., Qifa, Z., Izumi, K., Masahiro, Y., Robert, F., Genevieve, D., David, S., Samuel, C., Doreen, W. and Lincoln, S. 2002. Development and Mapping of 2240 New SSR Markers for Rice (Oryza sativa L.). DNA Research. 9 (6): 199-207.

The Potato Genome Sequencing Consortium. 2011. Genome Sequence and Analysis of the Tuber Crop Potato. Nature. 475(7355): 189-195.

Varshney, R. K., Song, C., Saxena, R. K., Azam, S., Yu, S., Sharpe, A. G., Cannon, S., Baek, J., Farmer, A. D., Gaur, P. M., Soderlund, C., Penmetsa, R. V., Xu, C., Bharti., A. K., He, W., Winter, P., Zhao, S., Hane, J. K., Carrasquilla-Garcia, N., Condie, J. A., Upadhayaya, H. D., Luo, M. C., Thudi, M., Gowda, C. L., Singh, N. P., Lichtenzveig, J., Gali, K. K., Rubio, J., Nadarajan, N., Dolezel, J., Bansal, K. C., Xu, X., Edwards, D., Zhang, G., Kahl, G., Gil, J., SIngh, K. B., Datta, S.K., Jackson, S. A., Wang, J., Cook, D. R. Draft Genome Sequence of Chickpea (Cicer Arietinum) Provides a Resource for Trait Improvement. 2013. Nature Biotechnology. 31(3): 240-246.

Stieneke, D. L., Eujayl, I. Imperfect SSR Finder. [Online]. From: http://www.fresnostate.edu/ssrfinder/). [Accessed on 7 July 2015].

Thiel, T., Michalek, W., Varshney, R. K. and Graner, A. 2003. Exploiting EST Databases for the Development of CDNA Derived Microsatellite Markers in Barley (Hordeum vulgare L.). Theor Appl Genet. 106(3): 411-422.

Xuewen, W., Peng, L,. and Zhaopeng, L. 2013. GMATo: A Novel Tool for the Identification and Analysis of Microsatellites In Large Genomes. Bioinformation. 9(10): 541-544.

Luciano, C., Dario, A. P., Velci, Q., D., S., Mauricio, M., K., Fernando, I., F., D., C. and Antonio, C., D., O. 2008. SSR Locator: Tool for Simple Sequence Repeat Discovery Integrated with Primer Design and PCR Simulation. International Journal of Plant Genomics. 28: 9.

Schaeffer, M. L., Harper, L. C., Gardiner, J. M., Andorf, C. M., Campbell, D. A., Cannon, E. K. S., Lawrence, C. J. 2011. MaizeGDB: Curation and Outreach Go Hand-In-Hand. Database: The Journal of Biological Databases and Curation.

Aaron R. Q. and Ira, M. H. 2010. BEDTools: A Flexible Suite of Utilities for Comparing Genomic Features. Bioinformatics. 26(6): 841-842.

Rozen, R. and Skaletsky, H. J. 2000. Primer3 on the WWW for General Users and for Biologist Programmers. In Bioinformatics Methods and Protocols. Methods in Molecular Biology.365-386

Jie, X., Ling, L., Yunbi, X., Churun, C., Tingzhao, R., Farhan, A., and Shufeng, Z., Fengkai, W., Yaxi, L., Jing, W., Moju, C. and Yanli, L. 2013. Development and Characterization of Simple Sequence Repeat Markers Providing Genome-Wide Coverage and High Resolution in Maize. DNA Research. 20: 497-509.

Jingtao, Q. and Jian, L. 2013. A Genome-Wide Analysis of Simple Sequence Repeats in Maize and the Development of Polymorphism Markers from Next-Generation Sequence Data. BMC Research Notes. 6: 403.

Sosinski, B., Gannavarapu, M., Hager, L. D., Beck, L. E., King, G. J., Ryder, C. D., Rajapakse, S., Baird, W. V., Ballard, R. E. and Abbott, A. G. 2000. Characterization of Microsatellitemarkers in Peach [Prunus persica (L.). Theor Appl Genet. 101(3): 421-428.

Singh, R., Sheoran, S., Sharma, S. and Chatrath R. 2011. Analysis of Simple Sequence Repeats (Ssrs) Dynamics in Fungus Fusarium graminearum. Bioinformation. 5(10): 402-404.

Yi, W., Chao, Y., Qiaojun, J., Dongjie, Z., Shuangshuang, W, Yuanjie, Y. and Long, Y. 2015. Genome-wide Distribution Comparative and Composition Analysis of the SSRs in Poaceae. BMC Genetics. 16: 18.

Hendre, P. S, Phanindranath, R., Annapurna, V., Lalremruata, A. and Aggarwal, R. K. 2008. Development of New Genomic Microsatellite Markers from Robusta Coffee (Coffea canephora Pierre ex A. Froehner) Showing Broad Crossspecies Transferability and Utility in Genetic Studies. BMC Plant Biol. 8(51): 1-19

Missio, R. F, Caixeta, E. T., Maciel-Zambolim, E., Zambolim, L. and Sakiyama, N. S. 2009. Development and Validation of SSR Markers for Coffea arabica L. Crop Breed Appl Biotechnol. 9: 361-371.

Garner, T. W. 2002. Genome Size and Microsatellite: The Effect of Nuclear Size on Amplification Potential. Genome 45: 212-215.

Damian, S., Syed, H., Benoit, B., Richard, H., Darin, L., Gudmundur, T. and Arek, K. 2009. BioMart–Biological Queries Made Easy. BMC Genomics. 10: 22.

Downloads

Published

2015-12-13

How to Cite

DISCOVERY OF POTENTIAL SSR MARKERS THROUGH GENOME WIDE ANALYSIS OF MAIZE B73 GENOME. (2015). Jurnal Teknologi, 77(24). https://doi.org/10.11113/jt.v77.6724