MORPHOLOGICAL TYPES AND ARRANGEMENT OF CONE CELLS, AND THE VISUAL ACUITY OF SUTCHI CATFISH PANGASIANODON HYPOPHTHALMUS
DOI:
https://doi.org/10.11113/jt.v77.6729Keywords:
Sutchi catfish, Pangasianodon hypophthalmus, cone cells, retina, visual acuityAbstract
The density and spatial arrangement of photoreceptor cells in the retina reflect the visual environment of a fish. The density of photoreceptor cells also determines the visual acuity. In this study, the morphological types and arrangement of cone cells, and the visual acuity of sutchi catfish Pangasianodon hypophthalmus were determined to obtain fundamental understanding of its vision. The left eyes of the adult sutchi catfish were enucleated, fixed in Bouin’s solution for 24 hours and then preserved in 70% ethanol. The fixed retinae were cut into 17 regions. The nine major regions were the dorso-nasal (DN), dorsal (D), dorso-temporal (DT), nasal (N), bottom (B), temporal (T), ventro-nasal (VN), ventral (V), and ventro-temporal (VT). The 17 regions were then immersed separately in a series of ethanol (from 70% to 100%), cleared with histolene, embedded in paraffin, cut into 6 μm thick tangential sections, and stained with haematoxylin-eosin. The density of cone cells per 0.01 mm2 in each region was counted from the stained sections. Visual acuity was then calculated using cone cell densities and lens radii. Only one type of cone cells, which is the single cone cell, was identified and these single cone cells were closely spaced. The area around the bottom region showed tendency of higher density of single cone cells. These findings provide the fundamental understanding on the adaptation of retinal structure of sutchi catfish to its feeding behaviour.   Â
References
Evans, B. I. 2004. A Fish’s Eye View of Habitat Change. In G. von der Emde, J. Mogdans, and B. G. Kapoor (eds.). The Senses of Fish: Adaptations for the Reception of Natural Stimuli. New Delhi: Narosa Publishing House. 1-30.
Bone, Q., B. Marshall, and J. H. S. Blaxter. 1995. Biology of Fishes. 2nd edn. London: Chapman and Hall. 219-261.
Wang, F. Y., M. Y. Tang, and H. Y. Yan. 2011. A Comparative Study on the Visual Adaptations of Four Species of Moray Eel. Vision Research. 51: 1099-1108.
Donatti, L., and E. Fanta. 1999. Morphology of the Retina in the Freshwater Fish Metynnis roosevelti Eigenmann (Characidae, Serrasalminae) and the Effects of Monochromatic Red Light. Revista Brasileira de Zoologia. 16(1): 151-173.
Fernald, R. D. 2000. Vision. In G. K. Ostrander (ed.). The Laboratory Fish. London: Academic Press. 225-235.
Sandström, A. 1999. Visual Ecology of Fish–A Review with Special Reference to Percids. Fiskeriverket Rapport. 2: 45-80.
Shand, J., S. M. Chin, A. M. Harman, and S. P. Collin. 2000. The Relationship between the Position of the Retinal Area Centralis and Feeding Behaviour in Juvenile Black Bream Acanthopagrus butcheri (Sparidae: Teleostei). Philosophical Transactions of the Royal Society of London - Series B: Biological Sciences. 355: 1183-1186.
Kino, M., T. Miyazaki, T. Iwami, and J. Kohbara. 2009. Retinal Topography of Ganglion Cells in Immature Ocean Sunfish, Mola mola. Environmental Biology of Fish. 85: 33-38.
Roberts, T. R., and C. Vidthayanon. 1991. Systematic Revision of the Asian Catfish Family Pangasiidae, with Biological Observations and Descriptions of Three New Species. Proceedings of the Academy of Natural Sciences of Philadelphia. 143: 97-144.
Subagja, J., J. Slembrouck, L. T. Hung, and M. Legendre. 1999. Larval Rearing of an Asian Catfish (Siluroidei, Pangasiidae): Analysis of Precocious Mortality and Proposition of Appropriate Treatments. Aquatic Living Resources. 12: 37-44.
Rohul Amin, A. K. M., M. A. J. Bapary, M. S. Islam, M. Shahjahan, and M. A. R. Hossain. 2005. The Impacts of Compensatory Growth on Food Intake, Growth Rate and Efficiently of Feed Utilization in Thai Pangas (Pangasius hypophthalmus). Pakistan Journal of Biological Sciences. 8: 766-770.
Ali, M. Z., M. A. Hossain, and M. A. Mazid. 2005. Effect of Mixed Feeding Schedules with Varying Dietary Protein Levels on Growth of Sutchi Catfish, Pangasius hypophthalmus (Sauvage) with Silver Carp, Hypophthalmichthys molitrix (Valenciennes) in Ponds. Aquaculture Research. 36: 627-634.
Van Zalinge, N., L. Sopha, N. P. Bun, H. Kong, and J. V. Jørgensen. 2002. Status of the Mekong Pangasianodon hypophthalmus Resources, with Special Reference to the Stock Shared between Cambodia and Viet Nam. MRC Technical Paper No. 1. Phnom Penh: Mekong River Commission. 1-29.
Froese, R., and D. Pauly. 2014. Pangasianodon hypophthalmus (Sauvage, 1878). FishBase. [Online]. From: http://www.fishbase.org/summary/Pangasianodon-hypophthalmus.html. [Accessed on 8 June 2015].
Mukai, Y., A. D. Tuzan, L. S. Lim, and S. Yahaya. 2010. Feeding Behaviour under Dark Conditions in Larvae of Sutchi Catfish Pangasianodon hypophthalmus. Fisheries Science. 76: 457-451.
Mukai, Y. 2011. High Survival Rates of Sutchi Catfish, Pangasianodon hypophthalmus, Larvae Reared under Dark Conditions. Journal of Fisheries and Aquatic Science. 6: 285-290.
Mukai, Y., and L. S. Lim. 2011. Larval Rearing and Feeding Behaviour of African Catfish, Clarias gariepinus, under Dark Conditions. Journal of Fisheries and Aquatic Science. 6: 272-278.
Mukai, Y. 2011. Remarkable High Survival Rates under Dim Light Conditions based on Chemo-Sensory Feeding Behaviour of Sutchi Catfish Larvae Pangasianodon hypophthalmus. Fisheries Science. 77: 107-111.
Mukai, Y., N. Sanudin, R. F. Firdaus, and S. Saad. 2013. Reduced Cannibalistic Behaviour of African Catfish, Clarias gariepinus Larvae under Dark and Dim Conditions. Zoological Science. 30: 421-424.
Mukai, Y., N. H. Tan, and L. S. Lim. 2013. Why is Cannibalism Less Frequent when Larvae of Sutchi Catfish Pangasianodon hypophthalmus are Reared under Dim Light? Aquaculture Research. Article First Published Online: 11 Dec 2013, DOI: 10.1111/are.12353.
Muhammad-Firdaus, S., and Y. Mukai. 2014. Cannibalistic Behaviour of African Catfish Juveniles, Clarias gariepinus under Different Light Wavelengths and Intensities. Proceeding of the 3rd International Conference on Applied Life Sciences (ICALS2014). F. Nejadkoorki (ed.). Yazd University, Iran, pp. 51-55.
Vidthayanon, C., and Z. Hogan. 2013. Pangasianodon hypophthalmus. The IUCN Red List of Threatened Species, Version 2014.3. [Online]. From: http://www.iucnredlist.org. [Accessed on 25 May 2015].
Nakano, N., R. Kawabe, N. Yamashita, T. Hiraishi, K. Yamamoto, and K. Nashimoto. 2006. Color Vision, Spectral Sensitivity, Accommodation, and Visual Acuity in Juvenile Masu Salmon Oncorhynchus masou masou. Fisheries Science. 72: 239-249.
Matsuda, K., S. Torisawa, T. Hiraishi, K. Nashimoto, and K. Yamamoto. 2005. Visual Acuity and Spectral Sensitivity of the Elkhorn Sculpin Alcichthys alcicornis. Fisheries Science. 71: 1136-1142.
Matsuda, K., S. Torisawa, T. Hiraishi, and K. Yamamoto. 2008. Comparison of Visual Acuity and Visual Axis of Three Flatfish Species with Different Ecotypes. Fisheries Science. 74: 562-572.
Tan, N. H., R. F. Firdaus, and Y. Mukai. 2013. Determination of Visual Axis of Brown-Marbled Grouper, Epinephelus fuscoguttatus to Develop a Demand Feeding System. Malaysian Journal of Science. 32: 24-28.
Matthiessen, L. 1880. Untersuchungen uber den Aplanatismus die Periscopie der Krystalllinsen in den Augen der Fische. Pflugers Arch. Gesamte Physiol. Menschen Tiere. 21: 287-307. As cited in: Neave, D. A. 1984. The Development of Visual Acuity in Larval Plaice (Pleuronectes platessa L.) and Turbot (Scophthalmus maximus L.). Journal of Experimental Marine Biology and Ecology. 78: 167-175.
Douglas, R. H., and H. J. Wagner. 1984. Action Spectrum of Photomechanical Cone Contraction in the Catfish Retina. Investigative Ophthalmology & Visual Science. 25: 534-538.
Nag, T. C., and R. K. Sur. 1992. Cones in the Retina of the Catfish, Clarias batrachus (L.). Journal of Fish Biology. 40: 967-969.
Sillman, A. J., S. J. Ronan, and E. R. Loew. 1993. Scanning Electron Microscopy and Microspectrophotometry of the Photoreceptors of Ictalurid Catfishes. Journal of Comparative Physiology A. 173: 801-807.
Douglas, R. H., S. P. Collin, and J. Corrigan. 2002. The Eyes of Suckermouth Armoured Catfish (Loricariidae, Subfamily Hypostomus): Pupil Response, Lenticular Longitudinal Spherical Aberration and Retinal Topography. The Journal of Experimental Biology. 205: 3425-3433.
Engström, K. 1963. Cone Types and Cone Arrangements in Teleost Retinae. Acta Zoologica. 44: 179-241.
Ching, F. F., S. Senoo, and G. Kawamura. 2015. Relative Importance of Vision Estimated from the Brain Pattern in African Catfish Clarias gariepinus, River Catfish Pangasius pangasius and Red Tilapia Oreochromis sp. International Research Journal of Biological Sciences. 4(1): 6-10.
Rainboth, W. J. 1996. Fishes of the Cambodian Mekong. In FAO Species Idenfication Field Guide for Fishery Purposes. Rome: FAO. 152-157.
Roberts, T. R., and C. Vidthayanon. 1991. Systematic Revision of the Asian Catfish Family Pangasiidae, with Biological Observations and Descriptions of Three New Species. Proceedings of the Academy of Natural Sciences of Philadelphia. 143: 97-144.
Kunlapapuk, S., and S. Kulabtong. 2011. Biology and Breeding of Snail Eater Pangasius (Pangasius conchophilus) in Thailand: An Overview. Journal of Agricultural Science and Technology A. 1: 1210-1213.
Tamura, T. 1957. A Study of Visual Perception in Fish, especially on Resolving Power and Accommodation. Bulletin of the Japanese Society of Scientific Fisheries. 22(9): 536-557.
Hajar, M. A. I., H. Inada, M. Hasobe, and T. Arimoto. 2008. Visual Acuity of Pacific Saury Cololabis saira for Understanding Capture Process. Fisheries Science. 74: 461-468.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.