INTEGRATION OF MEDICAL ONTOLOGY CONCEPTS TO ANNOTATE MEDICAL IMAGES

Authors

  • Mohd Nizam Saad School of Multimedia Technology and Communication, Universiti Utara Malaysia, Sintok, Kedah, Malaysia
  • Zurina Muda Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
  • Noraidah Sahari Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
  • Hamzaini Abd Hamid Radiology Department, National University Medical Center Malaysia, Bandar Tun Razak, Kuala Lumpur, Malaysia

DOI:

https://doi.org/10.11113/jt.v77.6807

Keywords:

Medical ontology, image annotation, Chest X-ray image

Abstract

Medical ontology has become an important element to enrich semantic description in medical images. The enrichment process can be done with medical image annotation where label or keyword can be added into the image description. Therefore, in this paper, we have proposed an annotation model that contains two components i.e. image processing and annotation component in order to annotate chest X-ray images with relevant medical ontology concepts. The first component helps transforming the original medical image into six regions of interest for the lung area while the second component prepares medical ontology concepts to annotate the derived regions. By annotating the chest X-ray images with medical ontology concepts, we hope to obtain better and accurate image retrieval.

References

Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C., Giannopoulou, E. 2007. Ontology Visualization Methods-A Survey. ACM Comput. Surv. 39(4): 10-43.

Iakovidis, D. K., Ieee, M., Schober, D., Boeker, M., Schulz, S. 2009. An Ontology of Image Representations for Medical Image Mining. The 9th International Conference of Informtion Technology and Application in Biomedicine. 5-7.

Koletsis, P., and Petrakis, E. 2010. SIA: Semantic Image Annotation Using Ontologies and Image Content Analysis. In: Campilho, A., Kamel, M. (Eds.). Image Analysis and Recognition. Springer Berlin: Heidelberg. 374-383.

Manzato, M.G., and Goularte, R. 2012. Automatic Annotation of Tagged Content Using Predefined Semantic Concepts’. Proceedings of the 18th Brazilian symposium on Multimedia and the web. ACM Press. 237-244.

Hudelot, C., Atif, J., and Bloch, I.2008. Fuzzy Spatial Relation Ontology For Image Interpretation. Fuzzy Sets Syst. 159(15): 1929-1951.

Mohd Nizam Saad, Muda, Z., Sahari, N., Hamid, H. A. 2014. Image Segmentation for Lung Region in Chest X-ray Images using Edge Detection and Morphology. The 4th IEEE International Conference on Control Systems, Computing and Engineering. Penang, Malaysia.

Ibragimov, B., Likar, B., Pernuš, F., Vrtovec, T. 2012. A Game-Theoretic Framework For Landmark-Based Image Segmentation. IEEE Trans. Med. Imaging. 31(9): 1761-1776.

van Ginneken, B., Stegmann, and M.B., Loog, M. 2006. Segmentation of Anatomical Structures In Chest Radiographs Using Supervised Methods: A Comparative Study On A Public Database. Med. Image Anal. 10(1): 19-40.

Brox, T., Rousson, M., Deriche, R., and Weickert, J. 2003. Unsupervised Segmentation Incorporating Colour, Texture, and Motion. Comput. Anal. Images Patterns. 353-360.

Yang, A. Y., Wright, J., Ma, and Y., Sastry, S. S. 2008. Unsupervised Segmentation Of Natural Images Via Lossy Data Compression. Comput. Vis. Image Underst. 110 (2): 212-225.

Mohd Nizam Saad, Muda, Z., Sahari, N., and Hamid, H.A. 2014. Spatial Features Terms for Describing Lung Nodule Location in Chest X-Ray Images. 13th International Conference on Intelligent Software Methodologies, Tools, and Techniques. IOS Press. Langkawi, Malaysia.

Wennerberg, P., Schulz, K., and Buitelaar, P. 2011. Ontology Modularization To Improve Semantic Medical Image Annotation. J. Biomed. Inform. 44(1): 155-62.

Zhou, X.S., Zillner, S., Moeller, M., and Sintek, M. 2008. Semantics and CBIR : A Medical Imaging Perspective Categories and Subject Descriptors. In Niagara Falls, C. (Ed.). International Conference On Content-Based Image And Video Retrieval. ACM Press. 571-580.

Wennerberg, P. 2009. Aligning Medical Domain Ontologies for Clinical Query Extraction. In: Proceedings of the 12th Conference of the European Chapter of the Association for Computational Linguistics: Student Research Workshop. ACM Press. 79-87.

Mejino, J. L. V, Rubin, D. L., and Brinkley, J. F. 2008. FMA-RadLex: An Application Ontology Of Radiological Anatomy Derived From The Foundational Model Of Anatomy Reference Ontology. AMIA Annu. Symp. Proc. 465-469.

Franklin, J. D., Mejino, J. L., Detwiler, L. T., Rubin, and D. L., Brinkley, J. F. 2008. Web Service Access To Semantic Web Ontologies For Data Annotation. AMIA 2008 Symp. Proc. 946.

Mueen, A., Zainuddin, R., Baba, M. S. 2008. Automatic Multilevel Medical Image Annotation And Retrieval. J. Digit. Imaging. 21(3): 290-295.

Russell, B. C., Torralba, A., Murphy, K. P., and Freeman, W. T. 2008. LabelMe: A Database and Web-Based Tool for Image Annotation. Int. J. Comput. Vis. 77(1-3): 157-173.

‘M-OntoMat 2.0, Image Annotation Tool’, http://mklab.iti.gr/m-onto2, accessed 9 October 2015.

Downloads

Published

2015-12-16

Issue

Section

Science and Engineering

How to Cite

INTEGRATION OF MEDICAL ONTOLOGY CONCEPTS TO ANNOTATE MEDICAL IMAGES. (2015). Jurnal Teknologi (Sciences & Engineering), 77(29). https://doi.org/10.11113/jt.v77.6807