MATHEMATICAL PRODUCT RECOVERY MODEL FOR PERISHABLE GOODS

Authors

  • Ayu Artini Alif Lee Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Masine Md Tap Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Azanizawati Ma'aram Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Norizah Redzuan Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v77.6892

Keywords:

Product return, Perishable goods recovery

Abstract

This paper presents a perishable product recovery model that aim to maximize the total recovery value of the return product. The perishable product under consideration has a property of quality degradation over time and can be reprocessed. The proposed model are expected to decide which, when and how does the return product being retrieve from the retailer.

References

Listes. O., Dekker, R. 2005. A Stochastic Approach To A Case Study For Product Recovery Network Design. Eur. J. Oper. Res. 160: 268–287.

Thierry, M., Salomon, M., Nunen, J. V., Wassenhove, L. V. 1995. Strategic Issues in Product Recovery Management. California Management Review. 37(2): 114-135.

Kopicki, R. J., Berg, M. J., Legg, L., Dasappa, V. and Maggioni, C. 1993. Reuse and Recycling: Reverse Logistics Opportunities. Council of Logistics Management. Oak Brook, IL.

Hasani, A., Zegordi, S. H., Nikbakhsh, E. 2011. Robust Closed-Loop Supply Chain Network Design For Perishable Goods In Agile Manufacturing Under Uncertainty. International Journal of Production Research. 50: 4649-4669.

Barros, A., Dekker, R. Scholten, V. 1998. A Two-Level Network For Recycling Sand: A Case Study. European Journal of Operational Research. 110(2): 199–214.

Amin, S. H., Zhang, G. 2013. A Multi-Objective Facility Location Model For Closed Loop Supply Chain Network Under Uncertain Demand And Return. Applied Mathematical Modelling. 37: 4165-4176.

Krikke, H. R., Harten, A., Schuur, P. C. 1999. Reverse Logistic Network Re-Design For Copiers. OR Spektrum. 21: 381-409.

Lee, D. H. and Dong, M. 2008. A Heuristic Approach To Logistics Network Design For End-Of-Lease Computer Products Recovery. Transport. Res. Part E: Logistics Transport. 44(3): 455–474.

De Brito, M. P. and Dekker, R. 2003. A Framework For Reverse Logistics. ERIM Report Series Reference No. ERS-2003-045-LIS. http:// ssrn.com/ abstract=42354.

Hu, T. L., Sheu, J. B., Huang, K. H. 2002. A Reverse Logistics Cost Minimization Model For The Treatment Of Hazardous Wastes. Transportation Research – Part E: Logistics And Transportation Review. 38(6): 457–473.

Lambert, S., Riopel, D., Kader, W. A. 2011. A Reverse Logistics Decisions Conceptual Framework. Computers & Industrial Engineering. 61: 561–581.

Salema, M. I. G., Povoa, A. P. B., Novais, A. Q. 2007. An Optimization Model For The Design Of A Capacitated Multi-Product Reverse Logistics Network With Uncertainty. European Journal of Operational Research. 179(3): 1063–1077.

Piramuthu, S., Farahani, P., Grunow, M. 2013. RFID-Generated Traceability For Contaminated Product Recall In Perishable Food Supply Networks. European Journal of Operational Research. 225: 253-262.

Subulan, K., Tas¸ A. S., Baykaso˘glu, A. 2014. Designing Environmentally Conscious Tire Closed-Loop Supply Chain Network With Multiple Recovery Options Via Interactive Fuzzy Goal Programming. Appl. Math Model. http://dx.doi.org/10.1016/ j.apm.2014.11.004.

Giannetti, B. F., Bonilla, S. H., Almeida C. M. V. B. 2013. An Emergency-Based Evaluation Of A Reverse Logistics Network For Steel Recycling. J. Clean Prod.46: 48–57.

Zeballos, L. J., Gomes, M. I., Barbosa-Povoa, A. P., Novais, A. Q. 2012. Addressing The Uncertain Quality And Quantity Of Returns In Closed-Loop Supply Chains. Comput. Chem. Eng. 47: 237–47.

Kannan, G., Sasikumar, P., Devika, K. 2010. A Genetic Algorithm Approach For Solving A Closed Loop Supply Chain Model: A Case Of Battery Recycling. Applied Mathematical Modelling. 34(3): 655-670.

Pati R. K, Vrat, P. & Kumar P. 2008. A Goal Programming Model For Paper Recycling System. Omega. 36(3): 405–17.

Ferguson, M., Jayaraman, V., Gilvan, C. S. 2007. An Application Of The EOQ Model With Nonlinear Holding Cost To Inventory Management Of Perishables. European Journal of Operational Research. 180: 485–490.

Downloads

Published

2015-12-20

Issue

Section

Science and Engineering

How to Cite

MATHEMATICAL PRODUCT RECOVERY MODEL FOR PERISHABLE GOODS. (2015). Jurnal Teknologi, 77(27). https://doi.org/10.11113/jt.v77.6892