ISOLATION AND CHARACTERIZATION POLYHYDROBUTYRATE (PHB) PRODUCING BACTERIA FROM WASTE COOKING OIL USING POMEGRANATE MOLASSES AS CARBON SOURCE

Authors

  • Laila Muftah Zargoun Department of Biosciences & Health Sciences, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Nor Azimah Mohd Zain Department of Biosciences & Health Sciences, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Shafinaz Shahir Water Research Alliance, Universiti Teknologi Malaysia

DOI:

https://doi.org/10.11113/jt.v77.6916

Keywords:

PHB, waste cooking oil, FTIR, NMR, pomegranate molasses

Abstract

In this study, a polyhydroxybutyrate (PHB) producing bacterium was isolated from waste cooking oil and characterized for its morphological and biochemical properties. Staining methods utilizing Sudan Black B and Nile Blue A were used on isolated bacterium to demonstrate good capability for synthesizing PHB. It was shown that the isolated bacterium species was related to Bacillus thuringiensis LMA by using 16S rRNA gene sequences analysis. During the stationary phase, the Bacillus strain was subjected to 10 % (w/v) of pomegranate molasses as a carbon source and 5 g/L of peptone as a nitrogen source. 2 ml of batch fermentation was collected. Samples were collected twice during the incubation period for detection of PHB using Sudan Black B. The PHB production accounted for up to 57.45% of the cell dry weight. The PHB produced was characterized using Fourier Transform Infrared Spectroscopy (FTIR) and Nuclear Magnetic Resonance Spectroscopy (NMR). The drastic absorption band at approximately 1717 cm-1 indicated the stretching vibration of C=O group in PHB polyester, while the functional groups of PHB were identified methyl (-CH3) at 1.28 ppm, methylene (-CH2) 2.0 and 2.5 ppm, and methylene doublet group (CH3) at 5.3 ppm.

References

Chen. Guo-Qiang. Chem. 2009. Chem. Soc. 38. 2434-2446.

A. J. Anderson, E. A. Dawes. 1990. Microbial. 54: 450-472.

Phanse. Nandini, Chincholikar. Amruta, Patel. Bhavesh, Pragya. Rathore, Vyas. Priti, Patel. Mital. 2011. International Journal of Biosciences. 27-32.

D. Aarthi, N. Ramana. 2011. Environmental Sciences. 1: 5.

S. Vishnuvardhan Reddy, M. Thirumala. 2012. Environmental Biology. 2(3):104-107.

Waqas. Nasir Chaudhry, Nazia. Jamil, Iftikhar. Ali. 2011. Ann Microbial. 61: 623-629.

Kumalaningsih. Sri, NurHidayat and NurAini. 2011. Agriculture Technology. 1(5): 63-67.

Demet. Çetin, Ufuk. Gündüz, İnci.Eroğlu, Meral.Yücel and Lemi.Türker. 2006. Biotechnology. 5(22): 2069-2072.

L. L. Madison, G. W. Huisman. 1999. Microbial. Mol. Biol. 63: 21-53.

J. Vidal-Mas, O. Resina-Pelfort, E. Haba, J. Comas, A. Manresa, J. Vives-Rego. 2001. Antonie van Leeuwenhoek. 80: 57-63.

Aslim. Belma, Zehra.NurYüksekdağ, Yavuz. Beyatli. 2002. Turkish Electronic Journal of Biotechnology. 24-30.

D. Fernández, E. Rodríguez, M. Bassas, M. Vińas, A. M. Solanas. 2005. Biochemical Engineering Journal. 26: 159-167.

A J. Rob Verlinden, J. David Hill, A. Melvin Kenward, D. Craig Williams, Zofia. Piotrowska-Seget and Iza. K. Radecka. 2011. AMB Express. 1: 11.

T. Fukui, Y. Doi. 1988. ApplMicrobiolBiotechnol. 49: 333-336.

M. L. Juan, L. W. Gonzalez, G. C. Walker. 1998. Applied and Environmental Microbiology. 64: 4600-4602.

K. L. Burdon. 1946. Journal of Bacteriology. 52(6): 665-78.

A. G. Ostle and J. G. Holt. 1982. Appl. Environ. Microbiol. 44(1): 238.

Paul. Vos, George.Garrity, Dorothy. Jones, Noel. R. Krieg, Wolfgang. Ludwig, Fred. Rainey, Karl-Heinz Schleifer, William B. Whitman. 2011. Springer Science & Business Media. 28.

Alejandra. Rodriguez-Contreras, Martin. Koller, Miguel. Miranda-de Sousa Dias, Margarita. Calafell, Gehart. Braunegg and María. Soledad Marqués-Calvo. 2011. FTB. 2926.

K. vakumar, G. Srinivasan, V. Baskar and R. Madhan. 2011. European Journal of Experimental Biology. 1(3): 180-187.

Adwitiya. Pal, Ashwini.Parbhu, Avinash. Arun Kumar, Badri. Rajagopal, Kajal. Dadhe, Vomsi. Pannamma and Srividya.Shivakumar. 2002. Polish Journal of Microbiology. 2: 149-154.

J. G. Holt, N.R. Krieg, P. H. A. Sneath, J. T. Staley, and S. T. Willianms. A J. Rob. Verlinden, J. David. Hill, A. Melvin. Kenward, D. Craig. Williams, Zofia. Piotrowska-Seget, and Iza. K Radecka. 1994. Bacteriology. 9th edition.

T. Mumtaz, N. A. Yahaya, S. Abd-Aziz, N. A. Rahman, P. L. Yee, Y. Shirai, M. A. Hassan. 2010. J Cleaner Prod. 1393-1402.

Molva.Celenk, Mert.Sudagidan, Okuklu.Burcu. 2009. Food control. 20. 829-834.

E. Haba, O. Bersco, C. Ferrer, A.Marqués. 2000. Enzyme and Microbialtechnology. 26: 40-44.

P. Spiekermann, B. H. A. Rehm, R. Kalscheuer, D. Baumeister, and A. Steinbüchel. 1999. Archives of Microbiology. 171(2): 73-80.

Anish, Kumari Bhuwal, Gulab, Singh, Neeraj, Kumar. Aggarwal, Varsha, Goyal, and Anita, Yadav. 2013. International Journal of Biomaterials. ID 752821.

A. Pal, A. Prabhu, A. Kumar, A. Rajagopal, B. Dadhe, K. Ponnamma, V. Shivakumar. 2009. Polish Journal of Microbiology. 58(2): 149-154.

M. K. Gouda, A. E. Swellam, and S. H. Omar. 2001. Microbial. 156: 201-207.

Liu. Fang, Li. Wenqing, Ridgway. Darin, and Gu. Tingyue. 1998. Biotechnol. Lett. 20: 345-348.

W. J. Page. 1992. FEMS micriobial Lett. 103: 149-157.

S. Chaijamrus and N. Udpuay. 2008. CIGR E Journal.

Downloads

Published

2015-12-20

Issue

Section

Science and Engineering

How to Cite

ISOLATION AND CHARACTERIZATION POLYHYDROBUTYRATE (PHB) PRODUCING BACTERIA FROM WASTE COOKING OIL USING POMEGRANATE MOLASSES AS CARBON SOURCE. (2015). Jurnal Teknologi (Sciences & Engineering), 77(31). https://doi.org/10.11113/jt.v77.6916