PREDICTION OF PM10 EXTREME CONCENTRATIONS IN URBAN MONITORING STATIONS IN SELANGOR, MALAYSIA USING THREE PARAMETERS EXTREME VALUE DISTRIBUTIONS (EVD)
DOI:
https://doi.org/10.11113/jt.v77.6984Keywords:
Extreme value theory (EVT), Extreme value distribution (EVD), Weibull, Generalized Extreme Value (GEV), Generalized Pareto Distribution (GPD), PM10, air pollution, prediction.Abstract
Objective: The purpose of the study was to determine the best distribution to predict the extreme concentrations of PM10 using the three parameters Weibull, Generalized Extreme Value (GEV) and Generalized Pareto Distribution (GPD). Methodology: The study used maximum concentration of daily PM10 data recorded in the period of 2000-2012 in Klang and Shah Alam, Selangor. The parameters of all distributions were estimated using the method of Maximum Likelihood Estimator (MLE). The goodness of fit of the distribution was determined using performance indicators namely; the accuracy measures and error measures. The best distribution was selected based on the highest accuracy measures and the smallest error measures. Results: The findings showed that the three parameters GEV was the best fit for daily maximum concentration for PM10 in these two stations. The result also demonstrated that the predicted number of days in which the concentration of PM10 exceeded the Malaysia Ambient Air Quality Guideline (MAAQG) for daily concentrations of 150µg/m3 were more than 85% in compliance of the actual number of days. Hence, the GEV can be used for the prediction of the PM10 extreme concentrations.
References
Dominick, D., Latif, M. T., Juahir, H., Aris, A. Z. and Zain, S. M. 2012. An assessment of influence of meteorological factors on PM10 and NO2 at selected stations in Malaysia. Sustain. Environ. Res. 22(5): 305–315.
Jamal, H. H., Pillay, M. S., Zailina, H., Shamsul, B. S., Sinha, K., Zaman Huri, Z., Khew, S. L., Mazrura, S., Ambu, S., Rasimah, A. and Ruzita, M. S. 2004. A Study of Health Impact and Risk Assessment of Urban Air Pollution in the Klang Valley. Malaysia, Kuala Lumpur.
Kumar, A. and Goyal, P. 2011. Forecasting of daily air quality index in Delhi. Sci. Total Environ. 409(24) : 5517–5523.
Sattar, M. R., Mat, R. and Puji, L. 2012. A Preliminary Survey of Air Quality in Makassar City South Sulawesi Indonesia. J. Teknol. (Sciences Eng.) 57(2012) : 123–136.
Department of Environment Malaysia. 2014. Malaysia Environmental Quality Report 2013. Kuala Lumpur.
Andracsek, R., Burns, P. E. and Mcdonnell. 2012. Flavors of Particulate Matter. Power Eng. 116 : 10.
World Health Organization. 2005. Malaysia Environmental Health Country Profile.
World Health Organization. 2005. WHO Air Quality Guidelines For Particulate Matter, Ozone, Nitrogen Dioxide And Sulfur Dioxide.
Li, P., Xin, J., Wang, Y., Wang, S., Shang, K., Liu, Z., Li, G., Pan, X., Wei, L. and Wang, M. 2013. Time-series analysis of mortality effects from airborne particulate matter size fractions in Beijing. Atmos. Environ. 81 : 253–262.
Department of Environment Malaysia. 2006. Malaysia Environmental Quality Report 2005. Kuala Lumpur.
Kotz, S. and Nadarajah, S. 2000. Extremeâ€Value Distributions : Theory and Applications. London: Imperial College Press.
Surman, P. G., Bodero, J. and Simpson, R. W. 1987. The prediction of the numbers of violations of standards and the frequency of air pollution episodes using extreme value theory. Atmos. Environ. 21(8): 1843–1848.
Roberts, E. M. 1979. Review of Statistics of Extreme Values with Applications to Air Quality Data Part II : Applications. J. Air Pollut. Control Assoc. 29(7): 733–740.
Roberts, E. M. 1979. Review of Statistics of Extreme Values with Applications to Air Quality Data Part I : Review. J. Air Pollut. Control Assoc. 29(6): 632–637.
Horowitz, J. and Barakat, S. 1979. Statistical analysis of the maximum concentration of an air pollutant: Effects of autocorrelation and non-stationarity. Atmos. Environ. 13(6): 811–818.
Smith, R. L. 1989. Extreme Value Analysis of Environmental Time Series : An Application to Trend Detection in Ground-Level Ozone. Stat. Sci. 4(4): 367–393.
Dasgupta, R. and Bhaumik, D. K. 1995. UPPER AND LOWER TOLERANCE LIMITS OF ATMOSPHERIC OZONE LEVEL AND Extreme Value Distribution. Sankhya Indian J. Stat. 57(B(2)) : 182–199.
Kuchenhoff, H. and Thamerus, M. 1995. Extreme value analysis of Munich air pollution data. Sonderforschungsbereich. 386(4): 1–24.
Lu, H. 2002. The statistical characters of PM10 concentration in Taiwan area. Atmos. Environ. 36: 491–502.
Lu, H.-C. and Fang, G.-C. 2003. Predicting the exceedances of a critical PM10 concentration—a case study in Taiwan. Atmos. Environ. 37: 3491–3499.
Hurairah, A., Ibrahim, N. A., Bin Daud, I. and Haron, K. 2005. An application of a new extreme value distribution to air pollution data. Manag. Environ. Qual. An Int. J. 16(1): 17–25.
Reyes, H. J., Vaquera, H. and Villasenor, J. A. 2010. Estimation of trends in high urban ozone levels using the quantiles of (GEV ). Environmetrics. 21 : 470–481.
Quintela-del-RÃo, A. and Francisco-Fernández, M. 2011. Analysis of high level ozone concentrations using nonparametric methods. Sci. Total Environ. 409: 1123–1133.
Sharma, P., Chandra, A., Kaushik, S. C., Sharma, P. and Jain, S. 2012. Predicting violations of national ambient air quality standards using extreme value theory for Delhi city. Atmos. Pollut. Res. 3: 170–179.
Md Yusof, N. F. F., Ramli, N. A., Yahaya, A. S., Sansuddin, N., Ghazali, N. A. and Al Madhoun, W. 2011. Central Fitting Distributions and Extreme Value Distributions for Predicion of High PM10 Concentration. IEEE. 6263–6266.
Ahmat, H., Yahaya, A. S. and Ramli, N. A. 2014. Prediction of PM10 Extreme Concentrations using Three Parameters Extreme Value Distributions (EVD). Sixth International Conference on Postgraduate Education (ICPE-6). Melaka. 17-18 December 2014.
Ahmat, H., Yahaya, A. S., Ramli, N. A., Ul-saufie, A. Z. and Abdul Hamid, H. 2015. Analysis of PM10 using Extreme Value Theory. ESTEEM Acad. J. 11(Special Issue. 1): 135–143.
Yap, X. Q. and Hashim, M. 2013. A robust calibration approach for PM10 prediction from MODIS aerosol optical depth. Atmos. Chem. Phys. 13: 3517–3526.
Azmi, S. Z., Latif, M. T., Ismail, A. S., Juneng, L. and Jemain, A. A. 2010. Trend and status of air quality at three different monitoring stations in the Klang Valley, Malaysia. Air Qual. Atmos. Heal. 3: 53–64.
Aryal, G. R. and Tsokos, C. P. 2009. On the transmuted extreme value distribution with application. Nonlinear Anal. Theory, Methods Appl. 71(12) : e1401–e1407.
[31] Georgopoulos, P. and Seinfeld, J. 1982. Statistical distributions of air pollutant concentrations. Environ. Sci. 16(7): 401A–416A.
Singh, V. P. and Guo, H. 1995. Parameter estimation for 3-parameter generalized pareto distribution by the principle of maximum entropy (POME). Hydrol. Sci. J. 40(2) : 165–181.
Bury, K. 1999. Statistical Distributions In Engineering. Cambridge University Press.
Bali, T. G. 2003. The generalized extreme value distribution. Econ. Lett. 79 : 423–427.
Millington, N., Das, S. and Simonovic, S. P. 2011. The Comparison of GEV, Log-Pearson Type 3 and Gumbel Distributions in the Upper Thames River Watershed under Global Climate Models. Ontario, Canada.
Bermudez, P. de Z. and Kotz, S. 2010. Parameter estimation of the generalized Pareto distribution—Part II. J. Stat. Plan. Inference. 140: 1374–1388.
Junninen, H., Niska, H., Tuppurainen, K., Ruuskanen, J. and Kolehmainen, M. 2004. Methods for imputation of missing values in air quality data sets. Atmos. Environ. 38 : 2895–2907.
Yahaya, A. S. and Ramli, N. A. 2008. Modelling of Carbon Monoxide Concentration in Major Towns in Malaysia : A Case Study in Penang, Kuching and Kuala Lumpur. Nibong Tebal.
Ji, L. and Gallo, K. 2006. An Agreement Coefficient for Image Comparison. Photogramm. Eng. Remote Sens. 72(7) : 823–833.
Martins, E. and Stedinger, J. 2000. Generalized maximumâ€likelihood generalized extremeâ€value quantile estimators for hydrologic data. Water Resour. Res. 36(3) : 737–744.
Rinne, H. 2008. The Weibull Distribution: A Handbook. Florida: CRC Press.
Abd-el-hakim, N. S. and Sultan, K. S. 2004. Maximum likelihood estimation from record-breaking data for the generalized Pareto distribution. Int. J. Stat. LXII(3) : 377–389.
Mathworks. 2015. MATLAB Programming Fundamentals. 8.5 ed. MA: The MathWorks, Inc.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.