LINEAR OPTIMAL CONTROL MODEL FOR FELLING THE OIL PALM TREES
DOI:
https://doi.org/10.11113/jt.v79.7183Keywords:
Linear Quadratic Regulator (LQR), Optimal Control, Palm Oil, Felling, Mathematical ModelAbstract
The increases of operational felling cost have prompted the oil palm industry to look at the current practices. The felling activity is considered as the main aspects to improve and maintain palm oil production through the provision of effective and agronomic practices. To support this success and achieve minimum cost of operation, this study aims to develop a time-invariant linear quadratic optimal control model for controlling the felling and harvest rate of the oil palm plantation. The proposed model involves two state variables which are biomass and crude oil. The optimal parameters for the model are estimated using a set of real data collected from Malaysian Palm Oil Board (MPOB). The study analyzes the solution of the resulting control problem within a limited time frame of 30 years and the results provide an optimal feedback control for the felling and harvest rates.
References
Malaysian Palm Oil Board. 2015. Overview of the Malaysian Oil Palm Industry 2014. Available at: http://bepi.mpob.gov.my/images/overview/Overview_of_Industry_2014.pdf.
Heryansyah, A., Idayu, I., Supriyanto, E. and Salmiyati. 2014. Oil Palm Plantations Management Effects on Productivity Fresh Fruit Bunch (FFB). APCBEE Procedia. 8: 282-286.
Hamzah, A. S., Murid, A. H., Aziz, Z. A., Banitalebi, A., Rahman, H., & Hamdon, N. (2016, June). Modeling of Microbial Approach in Wastewater Treatment Process: A Case Study of mPHO in Taman Timor Oxidation Pond, Johor, Malaysia. In S. Salleh, N. A. Aris, A. Bahar, Z. M. Zainuddin, & N. Maan (Eds.). AIP Conference Proceedings (1750)1, 030023.
Hamzah, A. S., Banitalebi, A., Murid, A. H., Aziz, Z. A., Ramli, H., Rahman, H., & Hamdon, N. 2016. A Mathematical Model for Wastewater Treatment Process of an Oxidation Pond. Jurnal Teknolog. 78(3-2): 65-70.
Cramb, R. a. and Ferraro, D. 2012. Custom and Capital: A Financial Appraisal of Alternative Arrangements for Large-Scale Oil Palm Development on Customary Land in Sarawak, Malaysia. Malaysian J. Econ. Stud. 49(1): 49-69.
Ismail, A. and Mamat, M. N. 2002. The Optimal Age of Oil Palm Replanting. Oil Palm Ind. Econ. J. 2(1): 11-18.
Basiron, Y. 2007. Palm Oil Production through Sustainable Plantations. Eur. J. Lipid Sci. Technol. 109: 289-295.
Kato, N. 2008. Optimal Harvesting for Nonlinear Size-Structured Population Dynamics. J. Math. Anal. Appl. 342(2): 1388-1398.
Aholoukpè, H., Dubos, B., Flori, A., Deleporte, P., Amadji, G., Chotte, J. L. and Blavet, D. 2013. Estimating Aboveground Biomass of Oil Palm: Allometric Equations for Estimating Frond Biomass. For. Ecol. Manage. 292: 122-129.
Harun, N. H., Misron, N., Sidek, R. M., Aris, I., Ahmad, D., Wakiwaka, H. and Tashiro, K. 2013. Investigations on a Novel Inductive Concept Frequency Technique for the Grading Of Oil Palm Fresh Fruit Bunches. Sensors (Switzerland). 13(2): 2254-2266.
Azhar, B., Saadun, N., Puan, C. L., Kamarudin, N., Aziz, N., Nurhidayu, S. and Fischer, J. 2015. Promoting Landscape Heterogeneity to Improve the Biodiversity Benefits of Certified Palm Oil Production: Evidence from Peninsular Malaysia. Glob. Ecol. Conserv. 3: 553-561.
Razali, M. H., Ishak, W., Ismail, W., Ramli, A. R., Sulaiman, N. and Harun, H. 2011. Prediction Model for Estimating Optimum Harvesting Time of Oil Palm Fresh Fruit Bunches. J. Food, Agric. Environ. 9: 0-5.
Khamiz, A., Ismail, Z. and Muhammad, A. 2005. Nonlinear Growth Models for Modeling Oil Palm Yield growth. J. Math. Stat. 1(3): 225-233.
Sharma, M. 2013. Sustainability in the Cultivation of Oil Palm – Issues & Prospects for the industry. J. Oil Palm Environ. An Off. Publ. Malaysian Palm Oil Counc. (MPOC). 4: 47-68.
Wahab, R., Samsi, H. and Mohamed, A. 2008. Utilization Potential of 30Year-old Oil Palm Trunks Laminated Veneer Lumbers for Non-structural Purposes. J. Sustain. Dev. 1(3).
Yamada, H., Tanaka, R., Sulaiman, O., Hashim, R., Hamid, Z. A. A., Yahya, M. K. A., Kosugi, A., Arai, T., Murata, Y. and Nirasawa, S. 2010. Old Oil Palm Trunk: A Promising Source of Sugars for Bioethanol Production. Biomass and Bioenergy. 34(11): 1608-1613.
Banitalebi, A., Aziz, M. I. A., Aziz, Z. A., & Nasir, N. 2016. Modelling and Optimization for Palm Oil Plantation Management. In S. Salleh, N. A. Aris, A. Bahar, Z. M. Zainuddin, N. Maan, M. H. Lee, & T. Ahmad (Eds.). AIP Conference Proceedings. 1750(1): 030046.
Xabadia, A. and Goetz, R. U. 2010. The Optimal Selective Logging Regime and the Faustmann Formula. J. For. Econ. 16(1): 63-82.
Banitalebi, A., Aziz, M. I. A., Bahar, A., & Aziz, Z. A. 2015. Enhanced Compact Artificial Bee Colony. Information Sciences. 298: 491-511.
Banitalebi, A., Aziz, M. I. A., & Aziz, Z. A. 2016. A self-adaptive Binary Differential Evolution Algorithm for Large Scale Binary Optimization Problems. Information Sciences. 367: 487-511.
Babaeizadeh, S., & Ahmad, R. 2017. Enhanced Constrained Artificial Bee Colony Algorithm for Optimization Problems. International Arab Journal of Information Technology (IAJIT). 14(2): 246-253.
Banitalebi, A., Aziz, M. I. A., & Ahmad, R. 2012. A Probabilistic Algorithm for Optimal Control Problem. International Journal of Computer Applications. 46(8).
Banitalebi, A., Ahmad, R., & Aziz, M. A. 2012. A Direct Method for Optimal Control Problem. International Journal of Pure and Applied Mathematics. 81(1): 33-47.
Lewis, F. L., Vrabie, D. L. and Syrmos, V. L. 2012. Optimal Control. Hoboken, NJ, USA: John Wiley & Sons, Inc.
Tasch, U. & Nagurka, M. L. 1991. Linear Quadratic Regulator with Varying Finite Time Durations. In American Control Conference, IEEE. 100-104.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.