THE STUDY OF OPTICAL GAIN FOR TERAHERTZ QUANTUM CASCADE LASER USING DENSITY MATRIX METHOD

Authors

  • Mohd Asmu'i Mohd Akil Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Khalid Akabli Docteur En Physique Theorique Et Modelisation, France
  • Amiruddin Shaari Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Mohd Khalid Kasmin Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Zulkafli Othaman Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v78.7392

Keywords:

Terahertz source, unipolar semiconductor lasers, intersubband transition, quantum cascade laser

Abstract


Terahertz (THz) quantum cascade lasers (QCL) are currently increasing in popularity. It is expected to become the main source of emerging terahertz radiation technology and applications. However to produce the device within the application specification is costly and time consuming. This is because the manufacturing process of the superlattice growth and the device processing and testing are long and expensive processes. Thus a prediction tool is needed to overcome the problems in designing and producing THz QCL within the needed optical expectation. The density matrix method is used to calculate the performance of this device electronically and optically. The result obtained was compared to the experimental result conducted by previous researchers. The calculation result showed that the gain is 20  when the population inversion occurs at threshold current density of 400 A cm-2. Meanwhile a negative gain or loss occurs below 350 A cm-2. As a conclusion, it is demonstrated that this method has a capability to explain the transport phenomena as well as to predict the performance of the THz QCL device design. 

References

Siegel, P. H. 2002. Terahertz Technology. IEEE Transactions on Microwave Theory and Techniques. 50(3): 910-928.

Fan, W. H., Burnett, A., Upadhya, P. C., Cunningham, J., Linfield, E. H. and Davies, G. 2007. Far-infrared Spectroscopic Characterization of Explosives for Security Applications Using Broadband Terahertz Time-domain Spectroscopy. Applied Spectroscopy. 61(6): 638-643.

Burnett, A. D., Fan, W., Upadhya, P. C., Cunningham, J. E., Hargreaves, M. D., Munshi, T., Edwards, H. G. M., Linfield, E. H. and Davies, G. 2009. Broadband Terahertz Time-domain Spectroscopy of Drugs-of-Abuse and the Use of Principal Component Analysis. Analyst. 134: 1658-1668.

Leahy-Hoppa, M. R., Fitch, M. J. and Osiander, R. 2009. Terahertz Spectroscopy Techniques for Explosives Detection. Analytical and Bioanalytical Chemisty. 395(2): 247-257.

Jepsen, P. U., Cooke, D. G. and Koch, M. 2011. Terahertz Spectroscopy and Imaging – Modern Techniques and Applications. Laser & Photonics Reviews. 5(1): 124-166.

Hübers, H. W., Eichholz, R., Pavlov, S. G. and Richter, H. 2013. High Resolution Terahertz Spectroscopy with Quantum Cascade Lasers. Journal of Infrared, Millimeter, and Terahertz Waves. 34(5-6): 325-341.

Wang, Y., Soskind, M. G., Wang, W. and Wysocki, G. 2014. High-Resolution Multi-Heterodyne Spectroscopy Based on Fabry-Perot Quantum Cascade Lasers. Applied Physics Letters. 104(3): 031114-5.

Tonouchi, M. 2007. Cutting-edge Terahertz Technology. Nature Photonics. 1: 97-105.

Faist, J., Capasso, F., Sivco, D. and Sirtori, C. 1994. Quantum Cascade Laser. Science. 264: 553-556.

Kohler, R., Tredicucci, A., Beltram, F., Beere, H., Linfield, E., Davies, G., Ritchie, D., Iotti, R. and Rossi, F. 2003. Terahertz Semiconductor Heterostructure Laser. Physics of Semiconductors 2002, Proceedings. 171: 145-152.

Kazarinov, R. F. and Suris, R. A. 1971. Possibility of the Amplification of Electromagnetic Waves In a Semiconductor With a Superlattice. Soviet Physics - Semiconductors. 5: 707-709.

Kumar, S., Hu, Q. and Reno, J. L. 2009. 186 K Operation of Terahertz Quantum-Cascade Lasers Based on a Diagonal Design. Applied Physics Letters. 94(13): 131105-3.

Williams, B. S. 2007. Terahertz Quantum-Cascade Lasers. Nature Photonics. 1: 517-525.

Strauch, D. and Dorner, B. 1999. Phonon Dispersion In GaAs. Journal of Physics: Condensed Matter. 2(6): 1457-1474.

Banit, F., Lee, S. C., Knorr, A. and Wacker, A. 2005. Self-Consistent Theory of the Gain Linewidth for Quantum-Cascade Lasers. Applied Physics Letters. 86(4): 041108-3.

Martl, M., Darmo, J., Deutsch, C., Brandstetter, M., Andrews, A. M., Klang, P., Strasser, G. and Unterrainer, K. 2011. Gain and Losses In THz Quantum Cascade Laser With Metal-Metal Waveguide. Optics Express. 19(2): 733-738.

Nelander, R. and Wacker, A. 2008. Temperature Dependence of the Gain Profile for Terahertz Quantum Cascade Lasers. Applied Physics Letters. 92(8): 081102-3.

Jukam, N., Dhillon, S. S., Oustinov, D., Zhao, Z. Y., Hameau, S., Tignon, J., Barbieri, S., Vasanelli, A., Filloux, P., Sirtori, C. and Marcadet, X. 2008. Investigation of Spectral Gain Narrowing In Quantum Cascade Lasers Using Terahertz Time Domain Spectroscopy. Applied Physics Letters. 93(10): 101115-3.

Kumar, S. and Hu, Q. 2009. Coherence of Resonant-Tunneling Transport In Terahertz Quantum-Cascade Lasers. Physical Review B - Condensed Matter and Materials Physics. 80(24): 245316-14.

Köhler, R., Iotti, R. C., Tredicucci, A. and Rossi, F. 2001. Design and Simulation of Terahertz Quantum Cascade Lasers. Applied Physics Letters. 79(24): 3920-3.

Terazzi, R. and Faist, J. 2010. A Density Matrix Model of Transport and Radiation In Quantum Cascade Lasers. New Journal of Physics.12(3): 033045-10.

Dupont, E., Fathololoumi, S. and Liu, H. C. 2010. Simplified Density-Matrix Model Applied To Three-Well Terahertz Quantum Cascade Lasers. Physical Review B - Condensed Matter and Materials Physics. 81(20): 205311-18.

Callebaut, H. and Hu, Q. 2005. Importance Of Coherence for Electron Transport In Terahertz Quantum Cascade Lasers. Journal of Applied Physics. 98(10): 104505-11.

Downloads

Published

2016-08-28

Issue

Section

Science and Engineering

How to Cite

THE STUDY OF OPTICAL GAIN FOR TERAHERTZ QUANTUM CASCADE LASER USING DENSITY MATRIX METHOD. (2016). Jurnal Teknologi, 78(9). https://doi.org/10.11113/jt.v78.7392