MORPHOLOGICAL AND ELECTRICAL CHARACTERIZATION OF HYBRID THIN-FILM COMPOSED OF TITANIA NANOCRYSTALS, POLY (3-HEXYLTHIOPHENE) AND PIPER BETLE LINN

Authors

  • Salmah Mohd Ghazali School of Ocean Engineering, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
  • Hasiah Salleh Centre for Fundamental and Liberal Education, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
  • Mohd Sabri Mohd Ghazali School of Fundamental Science, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
  • Ahmad Nazri Dagang School of Ocean Engineering, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
  • Azmi Zakaria Department of Physics, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • Muhammad Aimy Mahfuzzan Mohd Zaini School of Ocean Engineering, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
  • Muhamad Azman Zulkifli School of Fundamental Science, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia

DOI:

https://doi.org/10.11113/jt.v78.7468

Keywords:

Electrical conductivity, Field Emission Scanning Electron Microscopy, Piper Betle Linn, Poly (3-hexylthiophene), Titania nanocrystals

Abstract

In this research, the effect of scan numbers of titania nanocrystals (TiO2 NCs) on the morphological and electrical characteristics of hybrid thin-films is investigated. These hybrid thin-films consist of a combination of organic (Piper Betle Linn extraction and Poly (3-hexytlthiophene) (P3HT)) and inorganic TiO2 NCs (anatase structure) materials. These hybrid thin-films are fabricated in bilayer heterojunction of ITO/TiO2 NCs/P3HT/Piper Betle Linn via electrochemistry method using Electrochemical Impedance Spectroscopy (EIS). The scan numbers of TiO2 NCs are varied by 1, 3 and 5 number of scans. The morphological characterization is carried out via Field Emission Scanning Electron Microscopy (FESEM) meanwhile the electrical characteristic of the hybrid thin-film is measured by using four point probes. FESEM image indicates the particle size was found to be around 17-34 nm. The increment of scan number of TiO2 NCs from one to five scan numbers of TiO2 NCs in bilayers thin films showed that the atomic percentage of titanium decrease from 5.23% to 2.20%. This result indicates that as the thickness of thin films increases, the electrons required more energy to excite into conduction band of TiO2. Meanwhile, the electrical conductivities of hybrid solar cell increase from 0.385 Scm-1 to 0.389 Scm-1 as the scan numbers of TiO2 increase from one to three, however the electrical conductivity decrease to 0.346 Scm-1 at five scan numbers. As a conclusion, this study shows that the morphological and electrical properties of hybrid thin-films can be significantly affected by the scan number of TiO2 NCs.

References

Lo, S., Liu, Z., Li, J., Helen, L. C and Yan, F. 2013. Hybrid Solar Cells Based on Poly (3-Hexylthiophene) and Electrospun TiO2 Nanofibers Modified with CdS Nanoparticles. Progress in Natural Science: Materials International. 23(5): 514-518.

Calogero, G., Citro, I., Marco, G. D., Minicante, S. A., Morabito, M. and Genovese, G. 2014. Brown Seaweed Pigment as a Dye Source for Photochemical Solar. SpectrochimicaActa Part A: Molecular and Biomolecular Spectroscopy. 117: 702-706.

Wu, J., Yue, G., Xiao, Y., Lin, J., Huang, M., Lan, Z., Tang, Q., Huang, Y., Fan, L., Yin, S and Sato, T. 2013. An Ultraviolet Responsive Hybrid Solar Cell Based on Titania/Poly (3-hexylthiohene). Scientific Reports. 3: 1283.

Hosenuzzaman, M., Rahim, N. A., Selvaraj, J., Hasanuzzaman, M., Malek, A. B. M. A. and Nahar, A. 2015. Global Prospects, Progress, Policies, and Environmental Impact of Solar Photovoltaic Power Generation. Renewable and Sustainable Energy Reviews. 41: 284-297.

Hall, A. 2010. Renewable Energy. Undergraduate Review: A Journal of Undergraduate Student Research. 12: 43-47.

Jarkko, E. 2012. Comparison of Three Finnish Berries as Sensitizers in a Dye-Sensitized Solar Cell. European Journal for Young Scientists and Engineers 1.

Pudaisani, P. R and Ayon, A. A. 2013. Low-Cost, High-Efficiency Organic/Inorganic Heterojuction Hybrid Solar Cells for the Next Generation Photovoltaic Device. Physics, Conference Series. 476: 012140.

Khalil, E. J. 2012. Natural Dyes-Sensitized Solar Cells Based on Nanocrystalline TiO2. SainsMalaysiana 41. 8: 1011-1016.

Saunders, B. R. 2012. Hybrid Polymer/Nanoparticle Solar Cells: Preparation, Principles and Challenges. Colloid and Interface Science. 369: 1-15.

Hasiah, S., Ibrahim, K., Senin, H. B and Halim, K. B. K. 2008. Electrical Conductivity of Chlorophyll with Polythiophene Thin Film on Indium Tin Oxide as P-N Heterojunction Solar Cell. Journal of Physical Science. 19(2): 77-92.

Mohammadi, M. R., Louca, R. R. M., Fray, D. J and Welland, M. E. 2012. Dye-Sensitized Solar Cells Based on a Single Layer Deposition of TiO2 from a New Formulation Paste and Their Photovoltaic Performance. Solar Energy. 86: 2654-2664.

Thambidurai, M., Muthukumarasamy, N., Velauthapillai, D. and Lee, C. 2014. Rosa Centifolia Sensitized ZnO Nanorods for Photoelectrochemical Solar Cell Applications. Solar Energy. 106: 143-150.

Fu, W., Shi, Y., Wang, L., Shi, M., Li, H. and Chen, H. 2013. A Green, Low-cost, and Highly Effective Strategy to Enhance the Performance of Hybrid Solar Cells: Post-Deposition Ligand Exchange by Acetic Acid. Solar Energy Materials & Solar Cells. 117: 329-335.

Zhong, M., Sheng, D., Li, C., Xu, S. and Wei, X. 2014. Hybrid Bulk Heterojunction Solar Cells Based on Poly (3-hexylthiophene) and Z907-Modified ZnO Nanorods. Solar Energy Materials and Solar Cells. 121: 22-27.

Yun, T. W. and Khaulah, S. 2011. Fabrication and Morphological Characterization of Hybrid Polymeric Solar Cells Based on P3HT and Inorganic Nanocrystal Blends. SainsMalaysiana. 40: 43-47.

Huang, Y., Hsu, J., Liao, Y., Yen, W., Li, S., Lin, S., Chen, C. and Su, W. 2011. Employing an Amphiphilic Interfacial Modifier to Enhance the Performance of a Poly (3-hexyl thiophene)/TiO2 Hybrid Solar Cell. Journal of Materials Chemistry. 21: 4450-4456.

Wu, B., Guo, C., Zheng, N., Xie, Z. and Stucky, G. D. 2008. Nonaqueous Production of Nanostructured Anatase with High-Energy Facets. American Chemical Society. 130: 17563-17567.

Lira-Cantu, M., Chafiq, A., Faissat, J., Gonvalez-Valls, I. and Yu, Y. 2011. Oxide/Polymer Interfaces for Hybrid and Organic Solar Cells: Anatase vs. Rutile TiO2. Solar Energy Materials & Solar Cells. 1362-1374.

Basel, M. A., Khaled, A. and Sahar, A. 2014. Fabrication and Characterization of Poly (3-Hexylthiophene) (P3HT) Sensor in Two Techniques (Dip-coating and Spin-coating) and Sensitivity Compared for Various Vapors. International Journal of Chemical Technology Research. 6(7): 3690-3696.

Salmah, M. G., Hasiah, S., Sabri, M. G. M., Dagang, A. N., Muhammad, A. M. Z. M. and Zakiyah, A. 2015. NanocrystalsTitania/Poly(3-Hexylthiophene) Combined with Piper Betle Linn as a Dye Source for Hybrid Solar Cells. Journal of Applied Science and Agriculture. 10(5) Special: 196-200.

Nik Aziz, N. A., Isa, M. I. N. and Hasiah, S. 2014. Electrical and Hall Effect Study of Hybrid Solar Cell. Clean Energy Technologies. 2(4): 322-326.

Zhou, H., Wu, L, Gao, Y. and Ma, T. 2011. Dye-Sensitized Solar Cells Using 20 Natural Dyes as Sensitizers. Photochemistry and Photobiology A: Chemistry. 219: 188-194.

Hasiah, S., Ghapur, E. A., Aziz, N. A. N., Dhafina, W. A., Hamizah, A., Laily, A. R. N. and Hazirah, C. H. 2014. Study the Electrical Properties and the Efficiency of Polythiophene with Dye and Chlorophyll as Bulk Hetero-Junction Organic Solar Cell. Advanced Materials Research. 895: 513-519.

Kamalan, K. A. M., Selvaraj, M., Maruthan, K. and Jeyakumar, D. 2012. Synthesis and Characterization of Nanosized Titanium Dioxide and Silicon Dioxide for Corrosion Resistance Applications. Coating Technology Research. 2: 163-170.

Habibi, M. H., Talebian, N. and Choi, J. 2007. The Effect of Annealing on Photocatalytic Properties of Nanostructured Titanium Dioxide Thin Films. Dyes and Pigments. 73: 103-110.

Mathews, N. R., Morales, E. R., Cortes-Jacome, M. A. and Toledo Antonio, J. A. 2009. TiO2 Thin Films – Influence of Annealing Temperature on Structural, Optical and Photocatalytic Properties. Solar Energy. 83: 1499-1508.

Hanaor, D. A. H., Triani, G. and Sorrell, C. C. 2011. Morphology and Photocatalytic Activity of Highly Oriented Mixed Phase Titanium Dioxide Thin Films. Surface and Coatings Technology. 205(12): 3659-3664.

Hardin, B. E., Snaith, H. J. and McGehee, M. D. 2012. The Renaissance of Dye-Sensitized Solar Cells. Nature Photonics. 6: 162-169.

Taylor, W. W. 2013. Nanoparticles and Polymer Crystallization Kinetics in Hybrid Eletronic Devices. Master Thesis. Faculty of California State Polytechnic State University, San Luis Obispo.

Brabec, C., Dyakonov, V. and Scherf, U. 2008. Organic Photovoltaics: Materials, Device Physics, and Manufacturing Technologies. Weinheim: Wiley-VCH.

Downloads

Published

2016-02-21

Issue

Section

Science and Engineering

How to Cite

MORPHOLOGICAL AND ELECTRICAL CHARACTERIZATION OF HYBRID THIN-FILM COMPOSED OF TITANIA NANOCRYSTALS, POLY (3-HEXYLTHIOPHENE) AND PIPER BETLE LINN. (2016). Jurnal Teknologi (Sciences & Engineering), 78(3). https://doi.org/10.11113/jt.v78.7468