ESTIMATION OF TEMPERATURE AND ELECTRON DENSITY IN STAINLESS STEEL PLASMA USING LASER INDUCED BREAKDOWN SPECTROSCOPY

Authors

  • Nurul Shuhada Tan Halid Physics Department, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Roslinda Zainal Physics Department, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Yaacob Mat Daud Physics Department, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v78.7472

Keywords:

Nd, YAG laser, plasma temperature, electron density, LIBS

Abstract

LIBS plasma produced by a 1064 nm Q-switched Nd:YAG laser in an atmospheric pressure was studied for the stainless steel sample. The laser output energy 150 mJ with pulse duration of 6 ns. The plasma emission spectrum was recorded by the LR1 Spectrometer connected to the fibre optic. The plasma temperature and electron density of each element were estimated by time-resolved spectroscopy of neutral atom and ion line emission. The plasma temperature was obtained from the Boltzmann plot method and their electron density was determined by using Saha-Boltzmann equation method. The preliminary qualitative LIBS analysis shows that several elements contained in the stainless steel. The element detected was Cu, Fe, Mn, Ni, and Cr. The results shows that Mn and Fe has the highest plasma temperature of 1.2 eV,  but the electron density of Mn was the highest with value 4.6x1020 cm-3, while the Cu has the lowest temperature that is 0.73 eV with the electron density 2.8x1017 cm-3. The results are discussed.

References

Peter, S. A. 1994. Plasma Physics: An Introduction to the Theory of Astrophysical, Geophysical & Laboratory Plasmas. Cambridge University Press. ISBN 978-0-521-44810-9.

Anabitarte, F., Cobo, A. and Higuera, J. M. L. 2012. Review Article Laser Induce Breakdown Spectroscopy: Fundamental, Application and Challenges. International Scholarly Research Network (ISRN) Spectroscopy. 285240.

Hussain, T. and Gondal, M. A. 2013. Laser Induced Breakdown Spectroscopy (LIBS) as a Rapid Tool for Material Analysis. Journal of Physics: Conference Series. 439: 012050.

Mao, X., Chan, W. T., Caetano, M., Shannon, M. A. and Russo, R. E. 1996. Preferential Vaporization and Plasma Shielding During Nano-Second Laser Ablation. Applied Surface Science. 96(98): 126-130.

Amoruso, S., Armenante, M., Berardi, V., Bruzzese, R. and Spinelli, R. 1997. Absorption and Saturation Mechanism in Aluminium Laser Ablated Plasmas. Appl. Physics. A. 65: 265-271.

Gomba, J. M., D’angelo, C., Bertuccelli, D. and Bertuccelli, G. Spectroscopic Characterization of Laser Induced Breakdown in Aluminium-Lithium Alloy Samples for Quantitative Determination of Traces. Spectrochim Acta B. 56: 695-705.

Abdellatif, G. and Imam, H. 2002. A Study of Laser Plasma Parameters at Different Laser Wavelengths. Spectrochimica Acta Part B. 57: 1155-1165.

Luo, W. F., Zhao, X. X., Sun, A. Q. B., Gao, C. X., Tang, J., Zhao, W. 2011. Spatial Diagnostic of 532 nm Laser-Induced Aluminium Plasma. Nuclear Instrument and Methods in Physics Research A. 637: S158-S160.

Hussein, A. E., Diwakar, P. K., Harilal, S. S. and Hasanein, A. 2013. The Role of Laser Wavelength on Plasma Generation and Expansion of Ablation Plumes in Air. Journal of Applied Physics. 113: 143-305.

Detalle, V., Sabsabi, M., Louis, S. O. A., Hamel and Heon, R. 2003. Influence of Er:Yag and Nd:Yag Wavelength on Laser-Induced Breakdown Spectroscopy Measurement under Air or Helium Atmosphere. Applied Optics. 42(30): 5971-5977.

Hanif, M., Salik, M. and Baig, M. A. 2011. Quantitative Studies of Copper Plasma using Laser Induced Breakdown Spectroscopy. Optic and Laser in Engineering. 49: 1456-1461.

Qindeel, R., Dimitrijevi, M. S., Shaikh, N. M., Bidin, N. and Daud, Y. M. 2010. Spectroscopic Estimation of Electron Temperature and Density of Zinc Plasma Open Air Induce by Nd:Yag Laser. Eur. Phy. J. Appl. Phys. 50: 30701.

Shah, M. L., Pulhani, A. K., Gupta, G. P. and Suri, B. M. 2012. Quantitative Elemental Analysis of Steel using Calibration-Free Laser-Induced Breakdown Spectroscopy. Applied Optics. 51(20).

Nek, M. S., Kalhoro, M. S., Hussain, A. and Baig, M. A. 2013. Spectroscopy Study of a Lead Plasma Produced by the 1064 nm, 532 nm and 355 nm of a Nd:Yag Laser. Spectrochimica Acta Part B: 88: 198-202.

De Giacomo A. 2003. Experimental Characterization of Metallic Titanium-Laser Induced Plasma by Time and Space Resolved Optical Emission Spectroscopy. Spectrochim Acta B. 58(1): 71-83.

Fujimoto, T. 2004. Plasma Spectroscopy. Clarendon Press, Oxford.

Van Der Mullen, J. M. N. 1990. On the Atomic State Distribution Function in Inductively Coupled Plasmas -The Stage of Local Thermal Equilibrium and its Validity Region. Spectrochim Acta Part B. 45: 1-13.

Capitelli, M., Capitelli, F. and Eletskii, A. 2000. Non-Equilibrium and Equilibrium Problems in Laser-Induced Plasmas. Spectrochim. Acta Part B. 55: 559-574.

Cristoforetti, A. g., De Giacomo, A. B., Dell'aglio C. M., Legnaioli, A. E. S., Tognoni, A. V., Palleschi, A. N. and Omenetto, D. 2010. Local Thermodynamic Equilibrium in Laser-Induced Breakdown Spectroscopy: Beyond The Mcwhirter Criterion. Spectrochimica Acta Part B. 65: 86-95.

Miziolek, A. W., Palleschi, V. and Schechter, I. 2006. Laser-Induced Breakdown Spectroscopy (LIBS) Fundamentals and Applications. Cambridge University Press, United Kingdom, Britain.

Bye, C. A. and Scheeline, A. 2003. Appli. Spectrosc. 2022-2030.

Hanif, M., Salik, M. and Baig, M. A. 2011. Quantitative Studies of Copper Plasma using Laser Induced Breakdown Spectroscopy. Optic and Laser in Engineering. 49: 1456-1461.

Sattmann, R., Sturm, V. and Noll, R. 1995. Laser-Induced Breakdown Spectroscopy of Steel Samples using Multiple Q-Switch Nd:Yag Laser Pulses. J. Phys. D. 28: 2181-2187.

Unnikrishnan, V. K., Alti, K., Kartha, V. B., Santoshi, C., Gupta, G. P. and Suri, B. M. 2010. Measurement of Plasma Temperature and Electron Density in Laser-Induced Copper Plasma by Time-Resolved Spectroscopy of Neutral Atom and Ion Emissions. Indian Academy of Science. 74(6): 983-993.

Torres, J., Palomares, J. M., Sola, A., Van der Mullen, A. A. J. N. and Gamero, A. 2007. A Stark Broadening Method to Determine Simultaneously the Electron Temperature and Density in High-Pressure Microwave Plasmas. J. Phys. D. 40: 5929-5936.

Shaikh, N. M., Kalhoro, M. S., Hussain, A. and Baig, M. A. 2013. Spectroscopy Study of a Lead Plasma Produced by the 1064 nm, 532 nm and 355 nm of a Nd:YAG Laser. Spectrochimica Acta Part B. 88: 198-202.

Haddad, J. E., Canioni, L. and Bousquet, B. 2014. Good Practice in Libs Analysis. Spectrochimica Acta Part B. 101: 171-182.

Sansonetti, J. E. and Martin, W. C. Handbook of Basic Spectroscopic Data. National Institute Of Standards And Technology, Gaithersburg, Maryland 20899-0001.

Downloads

Published

2016-02-21

Issue

Section

Science and Engineering

How to Cite

ESTIMATION OF TEMPERATURE AND ELECTRON DENSITY IN STAINLESS STEEL PLASMA USING LASER INDUCED BREAKDOWN SPECTROSCOPY. (2016). Jurnal Teknologi, 78(3). https://doi.org/10.11113/jt.v78.7472