INVESTIGATING THE EFFECT OF TAPER LENGTH ON SENSITIVITY OF THE TAPERED-FIBER BASED TEMPERATURE SENSOR

Authors

  • Baktiar Musa Faculty of Electrical Engineering, Universiti Teknologi MARA Terengganu, 23000 Dungun, Terengganu, Malaysia
  • Yasmin Mustapha Kamil Wireless and Photonic Networks Research Center, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • Muhammad Hafiz Abu Bakar Wireless and Photonic Networks Research Center, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • Ahmad Shukri Mohd Noor Wireless and Photonic Networks Research Center, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • Alyani Ismail Wireless and Photonic Networks Research Center, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • Mohd Adzir Mahdi Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

DOI:

https://doi.org/10.11113/jt.v78.7479

Keywords:

Fiber optic sensor, tapered fiber, temperature sensor

Abstract

A temperature sensor using single-mode tapered fiber is presented. To better understand the behaviour of a tapered optical fiber, transmission experiments with different taper profiles, specifically waist length were performed. The effects of taper profiles on the sensitivity of the sensor were also investigated. It is demonstrated that careful selection of the taper profile can increase the sensitivity of the sensor. In our experiment, a good temperature sensing result was achieved using the optimum parameter. The best sensitivity achieved was 45.5 pm/°C that measured the range of temperature from 30°C to 120°C. The fabricated sensors are easy to fabricate and relatively low cost. Our results indicate that the tapered fiber based temperature sensor has high sensitivity and good repeatability.  

References

Grattan, K. 2000. Fiber Optic Sensor Technology: An Overview. Sensors and Actuators A: Physical. 82: 40-61.

Wang, P., Y. Semenova, Q. Wu, and G. Farrell. 2011. A Fiber-optic Voltage Sensor Based on Macrobending Structure. Opt. Laser Technol. 43: 922-925.

Guo, H., G. Xiao, N. Mrad, and J. Yao. 2011. Fiber Optic Sensors for Structural Health Monitoring of Air Platforms. Sensors (Basel).11(4): 3687-705.

Zhu, T., D. Wu, M. Liu, and D. W. Duan. 2012. In-Line Fiber Optic Interferometric Sensors in Single-Mode Fibers. Sensors (Switzerland). 12(8): 10430-10449.

Li, Y., C. Wen, Y. Sun, Y. Feng, and H. Zhang. 2014. Capillary Encapsulating of Fiber Bragg Grating and the Associated Sensing Model. Opt. Commun. 333: 92-98.

Li, Q. S., X. L. Zhang, H. He, Q. Meng, J. Shi, J. N. Wang, and W. F. Dong. 2014. Improved Detecting Sensitivity of Long Period Fiber Gratings by Polyelectrolyte Multilayers: the Effect of Film Structures. Opt. Commun. 33: 39-44.

Liu, Y., W. Peng, Y. Liang, X. Zhang, X. Zhou, and L. Pan. 2013. Fiber-optic Mach-Zehnder Interferometric Sensor for High-sensitivity High Temperature Measurement. Opt. Commun. 300: 194-198.

Rajan, G., M. Ramakrishnan, Y. Semenova, K. Milenko, P. Lesiak, A. W. Domanski, T. R. Wolinski, and G. Farrell. 2012. A Photonic Crystal Fiber and Fiber Bragg Grating-Based Hybrid Fiber-Optic Sensor System. IEEE Sens. J. 12(1): 39-43.

Lim, K. S., I. Aryanfar, W. Y. Chong, Y. K. Cheong , S. W. Harun and H. Ahmad. 2012. Integrated Microfibre Device for Refractive Index and Temperature Sensing. Sensors. 12: 11782-11789.

Mescia, L. and F. Prudenzano. 2013. Advances on Optical Fiber Sensors. Fibers. 2(1): 1-23.

Ji, W. B., H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim. 2012. Ultrahigh Sensitivity Refractive Index Sensor Based on Optical Microfiber. IEEE Photonics Technol. Lett. 24(20): 1872-1874.

Zibaii, M. I., H. Latifi, Z. Saeedian, and Z. Chenari. 2014. Nonadiabatic Tapered Optical Fiber Sensor for Measurement of Antimicrobial Activity of Silver Nanoparticles Against Escherichia coli. J. Photochem. Photobiol. B Biol.135: 55-64.

Tian, Y., W. Wang, N. Wu, X. Zou, X. Wang, and B. D. Program. 2011. Tapered Optical Fiber Sensor for Label-Free Detection of Biomolecules. Sensors (Basel, Switzerland). 11: 3780-3790.

Lin, H. Y., C. H. Huang, G. L. Cheng, N. K. Chen, and H. C. Chui. 2012. Tapered Optical Fiber Sensor Based on Localized Surface Plasmon Resonance. Opt. Express. 20(19): 21693-701.

Lee, C-H., J. Lee, M-K Kim and K-T Kim. 2011. Characteristics of a Fiber Bragg Grating Temperature Sensor Using the Thermal Strain of an External Tube. Journal of the Korean Physical Society. 59(5): 3188-3191.

Yun, L., W. Peng, Y. Liang, X. Zhang, X. Zhou and L. Pan. 2013. Fiber-optic Mach–Zehnder Interferometric Sensor for High-Sensitivity High Temperature Measurement. Optics Communications. 300: 194-198.

Black, R. J., S. Lacroix, F. Gonthier, and J. D. D. Love. 1991 Tapered Single-Mode Fibres and Devices. Pt. 2: Experimental And Theoretical Quantification. IEE Proc. J. 138(5): 355-364.

Harun, S. W., K. S. Lim, C. K. Tio, K. Dimyati, and H. Ahmad. 2013. Theoretical Analysis and Fabrication of Tapered Fiber. Opt.-Int. J. Light Electron Opt.124(6): 538-543.

Ravets, S., J. E. Hoffman, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, and L. A. Orozco. 2013. Intermodal Energy Transfer in a Tapered Optical Fiber: Optimizing Transmission. J. Opt. Soc. Am. A. Opt. Image Sci. Vis. 30(11): 2361-71.

Nguyen, L. V., D. Hwang, S. Moon, D. S. Moon, and Y. Chung. 2008. High Temperature Fiber Sensor with High Sensitivity Based on Core Diameter Mismatch. Opt. Express. 16(15): 11369-11375.

Okamoto, K. Fundamental of Optical Waveguides. 2006. London: Academic Press.

E. M. J. Weber, A. V Dotsenko, L. B. Glebov, and V. A. Tsekhomsky, Handbook of Optical Materials. 2003. New York: CRC Press.

Li, E., X. Wang, and C. Zhang. 2006. Fiber-optic Temperature Sensor Based on Interference of Selective Higher-Order Modes. Appl. Phys. Lett. 89(9): 091119.

Xu, B., J. Li, Y. Li, J. Xie, and X. Dong. 2014. Liquid Seal for Temperature Sensing with Fiber-Optic Refractometers. Sensors. 14(8): 14873-4884.

Yadav, T., M. A. Mustapha, M. H. Abu Bakar and M. A. Mahdi. 2014. Study of Single Mode Tapered Fiber-optic Interferometer of Different Waist Diameters and Its Application As A Temperature Sensor. 14024: 8-12.

Monzón-Hernández, D., V. P. Minkovich, and J. Villatoro. 2006. High-temperature Sensing with Tapers Made of Microstructured Optical Fiber. IEEE Photonics Technol. Lett. 18(3): 511-513.

Kieu, K. Q. and M. Mansuripur. 2006. Biconical Fiber Taper Sensors. IEEE Photonics Technol. Lett. 18(21): 2239-2241.

Downloads

Published

2016-02-21

Issue

Section

Science and Engineering

How to Cite

INVESTIGATING THE EFFECT OF TAPER LENGTH ON SENSITIVITY OF THE TAPERED-FIBER BASED TEMPERATURE SENSOR. (2016). Jurnal Teknologi, 78(3). https://doi.org/10.11113/jt.v78.7479