OPTICAL BIOSENSORS PROSPECTIVE BASED ON BRAGG GRATING POLYMER WAVEGUIDE

Authors

  • Mohd Hazimin Mohd Salleh Department of Physics, Kulliyyah of Science, International Islamic University Malaysia (IIUM),25200 Kuantan, Pahang, Malaysia
  • Mohd Haziq M.S Department of Computer Science, Kulliyyah of Information and Communication Technology, International Islamic University Malaysia (IIUM), Gombak, 50728 Kuala Lumpur, Malaysia
  • Muhammad Salihi Abd Hadi Department of Computational and Theoretical Science, Kulliyyah of Science, International Islamic University Malaysia (IIUM), 25200 Kuantan, Pahang, Malaysia

DOI:

https://doi.org/10.11113/jt.v78.7482

Keywords:

Optical biosensor, Bragg grating, simulation, label-free sensing, polymer waveguide

Abstract

In this work, we demonstrate the potential of Bragg grating polymer waveguide as an optical biosensor. Visible wavelength region at 650 nm is used as a centre wavelength because it is commonly used in biological and chemical sensing for both label and label-free sensing.  The Bragg polymer waveguide structure is simulated using RSoft optical design and analysis software. The results show that there is a transmission drop with a 3 dB bandwidth of 661.0 nm when the surrounding refractive index is 1.33. The specific wavelength (transmission drop) is shifted to 724.2 nm when we increased the surrounding medium into 1.43 to mimic the bioanalytes solution. Simulation result shows that the wavelength shift was approximately 63.2 nm for every 0.1 increasing of surrounding refractive index. The Bragg grating polymer waveguide was fabricated by using electron beam lithography. Then, the fabricated devices were easily integrated within microfluidic systems in order to validate the wavelength shift. From the experiments, the wavelength shift occurred approximately 20.3 nm over 0.1 increment of refractive index. The discrepancies were likely due to the accumulation of sucrose solution on top and sidewall of the sensing area, the insertion loss between input and output coupling of the waveguide interface that induced the noise to signal ratio. Where we know that, is impossible to happen in simulation. Thus both simulation and experimental results strongly indicate that Bragg grating polymer waveguide structure at visible wavelength region have a potential for label or label-free optical biosensing applications.

References

Cooper, M.A. 2009. Label-Free Biosensor: Techniques and Applications. Cambridge University Press, UK.

H. K. Hunt and A. M. Armani. 2010. Label-free Biological And Chemical Sensors. Nanoscale. 2: 1544-1559.

S. P. Wang, A. Ramachandran, and S. J. Ja. 2009. Integrated Microring Resonator Biosensors for Monitoring Cell Growth and Detection of Toxic Chemicals in Water. Biosensors & Bioelectronics. 24: 3061-3066.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine. 1997. Microring Resonator Channel Dropping Filters. Journal of Lightwave Technology. 15: 998-1005.

D. Lee, T. Lee, J. Park, S. Kim, W. Hwang, and Y. Chung. 2007. Widely Tunable Double-Ring-Resonator Add/Drop Filter Using High-Index-Contrast Polymer Waveguide. 1(4): 822-8231441.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little. 2000. A Universal Biosensing Platform Based on Optical Micro-Ring Resonators. Biosensors & Bioelectronics. 23: 939-944.

L. Caruso and I. Montrosset. 2003. Analysis of a Racetrack Microring Resonator with MMI Coupler. Journal of Lightwave Technology. 21: 206-210.

A. Yariv. 2002. Critical Coupling and Its Control in Optical Waveguide-Ring Resonator Systems. IEEE Photonics Technology Letters. 14: 483-485.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold. 2002. Protein Detection by Optical Shift of a Resonant Microcavity. Applied Physics Letters. 80: 4057-4059.

N. M. Hanumegowda, I. M. White, H. Oveys, and X. D. Fan. 2005. Label-free Protease Sensors Based on Optical Microsphere Resonators. Sensor Letters. 3: 315-319.

J. P. Guo, M. J. Shaw, G. A. Vawter, G. R. Hadley, P. Esherick, and C. T. Sullivan. 2005. High-Q Microring Resonator for Biochemical Sensors. Integrated Optics: Devices, Materials, and Technologies IX. 5728: 83-92368.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, and M. S. Unlu. 2006. Optical Sensing of Biomolecules Using Microring Resonators. IEEE Journal of Selected Topics in Quantum Electronics. 12: 148-155.

D. X. Xu, M. Vachon, A. Densmore, R. Ma, A. Delage, S. Janz, J. Lapointe, Y. Li, G. Lopinski, D. Zhang, Q. Y. Liu, P. Cheben, and J. H. Schmid. Label-free Biosensor Array based on silicon-on-insulator Ring Resonators Addressed Using a WDM Approach. Optics Letters. 35: 2771-2773.

R. W. Boyd and J. E. Heebner. 2001. Sensitive Disk Resonator Photonic Biosensor. Applied Optics. 40: 5742-5747.

Y. Z. Sun, S. I. Shopova, G. Frye-Mason, and X. D. Fan. 2008. Rapid Chemical-Vapor Sensing Using Optofluidic Ring Resonators. Optics Letters. 33: 788-790.

S. Arnold, R. Ramjit, D. Keng, V. Kolchenko, and I. Teraoka. 2008. MicroParticle Photophysics Illuminates Viral Bio-Sensing. Faraday Discussions. 137: 65-83.

A. M. Armani and K. J. Vahala. 2006. Chemical and Biological Detectors Using Ultra-High-Q Microresonators. Optomechatronic Micro/Nano Devices and Components II. 6376: U48-U57215.

H. K. Hunt, C. Soteropulos, and A. M. Armani. 2010. Bioconjugation Strategies for Microtoroidal Optical Resonators. Sensors. 10: 9317-9336.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, T. Mischki, G. Lopinski, J. Lapointe, A. Delage, E. Post, C. Storey, P. Cheben, B. Lamontagne, and J. H. Schmid. 2008. Densely Folded Silicon Photonic Wire Biosensors in Ring Resonator and Mach-Zehnder Configurations. Conference on Lasers and Electro-Optics & Quantum Electronics and Laser Science Conference. 1-9: 1947-19483638.

F. Vollmer and S. Arnold. 2008. Whispering-gallery-mode Biosensing: Label-Free Detection Down to Single Molecules. Nature Methods. 5: 591-596.

V. M. N. Passaro, F. Dell'Olio, B. Casamassima, and F. De Leonardis. Guided-wave Optical Biosensors. Sensors. 7: 508-536.

K. De Vos, J. Girones, S. Popelka, E. Schacht, R. Baets, and P. Bienstman. 2009. SOI Optical Microring Resonator with poly(ethylene glycol) Polymer Brush For Label-free Biosensor Applications. Biosensors & Bioelectronics. 24: 2528-2533.

C. A. Barrios, B. Sanchez, K. B. Gylfason, A. Griol, H. Sohlstrom, M. Holgado, and R. Casquel. 2007. Demonstration of Slot-Waveguide Structures on Silicon Nitride/Silicon Oxide Platform. Optics Express. 15: 6846-6856.

D. X. Dai, B. Yang, L. Yang, Z. Sheng, and S. L. He. 2009. Compact Microracetrack Resonator Devices Based on Small SU-8 Polymer Strip Waveguides. IEEE Photonics Technology Letters. 21: 254-256.

G. T. Paloczi, Y. Y. Huang, A. Yariv, and S. Mookherjea. 2003. Polymeric Mach-Zehnder Interferometer Using Serially Coupled Microring Resonators. Optics Express. 11: 2666-2671.

B. H. Ong, X. Yuan, S. Tao, and S. C. Tjin. 2006. Photothermally Enabled Lithography for Refractive-Index Modulation in SU-8 Photoresist. Optics Letters. 31: 1367-1369.

B. Y. Shew, C. H. Kuo, Y. C. Huang, and Y. H. Tsai. 2005. UV-LIGA Interferometer Biosensor Based on the SU-8 Optical Waveguide. Sensors and Actuators a-Physical. 120: 383-389.

M. H M. Salleh, A. Glidle, J.M Cooper. 2010. Characterization of SU8 Polymer Gapless Disk Resonators Using Visible Wavelength Light Source. Optics and Photonics 2010 (Photon10). University of Southampton, U.K, 23rd– 26th August 2010.

E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi. 2009. High Quality Planar Silicon Nitride Microdisk Resonators for Integrated Photonics in the Visible Wavelength Range. Optics Express. 17: 14543-14551.

Downloads

Published

2016-02-21

Issue

Section

Science and Engineering

How to Cite

OPTICAL BIOSENSORS PROSPECTIVE BASED ON BRAGG GRATING POLYMER WAVEGUIDE. (2016). Jurnal Teknologi (Sciences & Engineering), 78(3). https://doi.org/10.11113/jt.v78.7482