INVESTIGATION OF FREQUENCY NOISE AND SPECTRUM LINEWIDTH IN SEMICONDUCTOR OPTICAL AMPLIFIER

Authors

  • Alexander William Setiawan Putra Malaysia Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Semarak, 54000 Kuala Lumpur, Malaysia
  • Kazuki Makinoshima Kanazawa University, Division of Electrical Engineering and Computer Science, Graduate School of Natural Science and Technology, Kakuma-machi, Kanazawa, Ishikawa Prefecture 920-1192, Japan
  • Minoru Yamada Kanazawa University, Division of Electrical Engineering and Computer Science, Graduate School of Natural Science and Technology, Kakuma-machi, Kanazawa, Ishikawa Prefecture 920-1192, Japan
  • Takayoshi Takashima Kanazawa University, Division of Electrical Engineering and Computer Science, Graduate School of Natural Science and Technology, Kakuma-machi, Kanazawa, Ishikawa Prefecture 920-1192, Japan
  • Sumiaty Ambran Malaysia Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Semarak, 54000 Kuala Lumpur, Malaysia

DOI:

https://doi.org/10.11113/jt.v78.7484

Keywords:

Optical fiber communication, semiconductor optical amplifier, noise, frequency noise, linewidth

Abstract

The characteristics of FM noise and linewidth of semiconductor optical amplifier without facet mirrors were theoretically analyzed and experimentally confirmed. The concept of discrete longitudinal mode for the spontaneous emission was introduced as the basis of quantum mechanical characteristics, allowing the quantitative examination of noise sources. The continuously broaden output spectrum profile of the amplified spontaneous emission (ASE) was well explained as a spectrum broadening of each longitudinal mode. We found that the linewidth of the inputted signal light hardly changes by the optical amplification in the SOA.  The FM noise increases proportional to square value of the noise frequency and less affected by the electron density fluctuation, the linewidth enhancement factor and the ASE. The higher FM noise in the higher noise frequency is caused by the intrinsic phase fluctuation on the optical emission. The characteristics of the linewidth and the noise frequency dependency were experimentally confirmed.  

References

T. Mukai and Y. Yamamoto. 1982. Noise in an AlGaAs Semiconductor Laser Amplifier. IEEE J. Quantum Electron. 18(4): 564-575.

T. Saitoh and T. Mukai. 1987. 1.5μm GaInAsP Traveling-Wave Semiconductor Laser Amplifier. IEEE J. Quantum Electron. 23(6): 1010-1020.

G. P. Agrawal and N. A. Olsson. 1989. Self-phase Modulation and Spectral Broadening of Optical Pulses in Semiconductor Laser Amplifiers. IEEE J. Quantum Electron. 25(11): 2297-2306.

E. Berglind and O. Nilsson. 1991. Laser Linewidth Broadening Caused by a Laser Amplifier. IEEE Photon. Technol. Lett. 3(5): 442-444.

S. Balsamo, F. Sartori, and I. Montrosset. 1996. Dynamic Beam Propagation Method for Flared Semiconductor Power Amplifiers. IEEE J. Sel. Top. Quantum Electron. 2: 378-384.

M. J. Munroe, J. Cooper, and M. G. Raymer. 1998. Spectral Broadening of Stochastic Light Intensity-Smoothed by a Saturated Semiconductor Optical Amplifier. IEEE J. Quantum Electron. 34 (3): 548-551.

M. Shtaif, B. Tromborg, and G. Eeisenstein. 1998. Noise Spectra of Semiconductor Optical Amplifiers: Relation Between Semiclassical And Quantum Descriptions. IEEE J. Quantum Electron. 34(5): 869-878.

M.J. Connelly. Wideband Semiconductor Optical Amplifier Steady-State Numerical Model. IEEE Journal of Quantum Electronics. 37: 3.

E. Udvary, T. Banky, A. Hilt and T. Marozsak. 2003. Noise and Gain Properties of Semiconductor Optical Amplifier. In proceeding of IEEE Transparent Optical Network Conference, 2003.

A. Champagne, J. Camel, R. Maciejko, K. J. Kasunic, D. M. Adams, and B. Tromborg. 2002. Linewidth Broadening in a Distributed Feedback Laser Integrated with a Semiconductor Optical Amplifier. IEEE J. Quantum Electron. 38(11): 1493-1502.

G. Morthier and B. Meyersoon. 2002. Intensity Noise and Line Width of Laser Diodes with Integrated Semiconductor Optical Amplifier. IEEE Photon. Technol. Lett. 14(12): 1644-1646.

A. Bilenca and G. Eisenstein. 2005. Statistical Noise Properties of an Optical Pulse Propagating in a Nonlinear Semiconductor Optical Amplifier. IEEE J. Quantum Electron. 41(1): 36-44.

X. Wei and L. Zhang. 2005. Analysis of the Phase Noise in Saturated Soas for DPSK Applications. IEEE J. Quantum Electronics. 41(4): 554-561.

M. Yamada. 2012. Analysis of Intensity and Frequency Noises in Semiconductor Optical Amplifier. IEEE J. Quantum Electron. 48(8): 980-990.

M. Yamada, N. Takeuchi, K. Sakumoto, and Y. Kuwamura. 2012. Variation of Relative Intensity Noise with Optical Power in InGaAsP Semiconductor Optical Amplifier. IEEE Photon. Technol. Lett. 24(22): 2049-2051.

K. Higuchi, N. Takeuchi, and M. Yamada. 2014. Peculiar Characteristics of Amplification and Noise for Intensity Modulated Light in Semiconductor Optical Amplifier. IEICE Trans. Electron. E97-C(11): 1093-1103.

M. Yamada. 2014. Theory of of Semiconductor Lasers. Springer.

C. H. Henry. 1982. Theory of the Linewidth of Semiconductor Lasers. IEEE J. Quantum Electron. 18(2): 259-264.

H. Shoji, T. Kaneko and K. Uesaka. Private Communication.

B. Daino, P. Spano, M. Tamburrini, and S. Piazzolla. Phase Noise and Spectral Line Shape in Semiconductor Lasers. IEEE J. Quantum Electron. 19: 266-270.

R. W. Tkach and A. R. Chraplyvy.1986. Phase Noise and Linewidth in an InGaAsP DFB laser. J. Lightwave Technol. 4: 1711-1716.

Downloads

Published

2016-02-21

Issue

Section

Science and Engineering

How to Cite

INVESTIGATION OF FREQUENCY NOISE AND SPECTRUM LINEWIDTH IN SEMICONDUCTOR OPTICAL AMPLIFIER. (2016). Jurnal Teknologi (Sciences & Engineering), 78(3). https://doi.org/10.11113/jt.v78.7484