THE APPLICATION OF LASER IN THERMAL TREATMENT OF SOLID PARTICLES AND GAS-PHASE OF BIOMASS PROCESSING-A REVIEW

Authors

  • Muhammad Mat Junoh Department of Thermo-Fluids, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81 310 UTM Johor Bahru, Johor, Malaysia
  • Farid Nasir Ani Department of Thermo-Fluids, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81 310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v78.7498

Keywords:

Laser pyrolysis, pyrolysis, renewable energy, waste material

Abstract

Application of laser in heating technique of both organic gas-phase and solid particles for thermochemical decomposition at elevated temperatures in the absence of oxygen is presently a challenging area. Laser pyrolysis is a powerful and a versatile tool for the gas-phase synthesis of nanoparticles. Generally, the purpose of pyrolysis is not only for energy production but also for the production of chemical feedstocks. This paper reviews on the pyrolysis activities, generally in Malaysia and the utilization of laser in pyrolysis for renewable energy and materials application. Malaysia is a well-known for palm oil producer country in the world, generating significant wastes yearly from oil palm mills such as empty fruit brunch (EFB), shell, fiber and palm oil mill effluent (POME) has put the government to solve these wastes problem by doing research on the development of renewable energy and materials. This reviews concluded that there are new area of research for the utilization of waste material by using laser technique.

References

Rasha, M., Bernd, V. K., and Arnulf, M. 2015. UV Raman Spectroscopy for the Characterization of Strongly Fluorescing Beverages. LWT - Food Science and Technology. 64: 56-60.

Ray, L. F., Andrés, L., Ricardo, S., and Fernando, A. N. O. 2015. Scanning Electron Microscopy with Energy Dispersive Spectroscopy and Raman and Infrared Spectroscopic Study of Tilleyite Ca5Si2O7(CO3)2-Y. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 149: 333-337.

Kanygin, M. A., Okotrub, A. V., Bulusheva, L. G., Vilkov, O. Y., and Hata, K. 2015. Revealing Distortion of Carbon Nanotube Walls via Angle-Resolved X-ray Spectroscopy. Current Applied Physics. 15: 1111-1116.

Joong, W. L., Yong-Soo, L., Jung-Min, P., Dae-Cheol, S., Gyeong, B. J., Jae-Ho, S., Soan, K., Chul-Sik, K., and Chul, K. 2015. Terahertz Spectroscopy of Human Sclera. Current Applied Physics. 15: 1156-1159.

Korshunov, K. V., Tsarev, M. V., Mokrushin, V. V., Shapovalov, A. M., and Zabavin, E. V. 2015. Application of Impedance Spectroscopy to Study Oxidized Powders of Titanium Hydride. Journal of Alloys and Compounds. 645: 140-143.

Gonzalez-Robles, A., Lares-Villa, F., Fernando, L. J, Oma~na-Molina, M., Salazar-Villatoro, L., and Martínez-Palomo, A. 2015. Balamuthia Mandrillaris: Further Morphological Observations of Trophozoites by Light, Scanning and Transmission Electron Microscopy. Experimental Parasitology.157: 150-55.

Zhaozheng, Y., Hang, S., Elmer, K., Mingzhong, L., and Haohan, L. 2015. Cell-sensitive Phase Contrast Microscopy Imaging by Multiple Exposures. Medical Image Analysis. 25: 111-121.

Muhunthan, N., Om-Pal, S., Vijaykumar, T., and Singh, V. N. 2015. Electrical Characterization of Grain Boundaries of CZTS Thin Films Using Conductive Atomic Force Microscopy Techniques. Materials Research Bulletin. 70: 373-378.

Jian, T., Chunlong, T., Yitao, L., Jian, Z., and Xuesong, Y. 2015. Study of Laser Uncaging Induced Morphological Alteration of Rat Cortical Neurites Using Atomic Force Microscopy. Journal of Neuroscience Methods. 253: 151-160.

C-Powers, L., and Miller, L. W. 2015. Photochemical Production of CO and CO2 in the Northern Gulf of Mexico: Estimates and Challenges for Quantifying the Impact of Photochemistry on Carbon Cycles. Marine Chemistry. 171: 21-35.

Andrea, M., Marco, M., Valter, M., Claudio, M., and Davide, V. 2015. Photo Generation of Reactive Transient Species Upon Irradiation of Natural Water Samples: Formation Quantum Yields in Different Spectral Intervals, and Implications for the Photochemistry of Surface Waters. Water Research. 73: 145-156.

Bin, L., Jie, C., SiSi, F., and Bin Sheng, Y. 2015. Structure, Photochemistry and Magnetic Properties of Tetrahydrogenated Schiff Base Chromium (III) Complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 140: 437-443.

Li, X. P., Wanga, X. J., Saunders, M., Suvorova, A., Zhang, L. C., Liu, Y. J., Fang, M. H., Huang, Z. H., and Sercombe, T. B. 2015. A Selective Laser Melting and Solution Heat Treatment Refined Al–12Si Alloy with a Controllable Ultrafine Eutectic Microstructure and 25% Tensile Ductility. Acta Materialia. 95: 74-82.

Dongyun, Z., Wen, N., Xuanyang, C., and Zhen, L. 2015. Effect of Standard Heat Treatment on The Microstructure and Mechanical Properties of Selective Laser Melting Manufactured Inconel 718 Superalloy. Materials Science & Engineering A. 644: 32-40.

Li, G. J., Li, J., and Luo, X. 2015. Effects of Post-Heat Treatment on Microstructure and Properties of Laser Cladded Composite Coatings on Titanium Alloy Substrate. Optics & Laser Technology. 65: 66-75.

El-Kholey, K. E. 2014. Efficacy and Safety of a Diode Laser in Second-Stage Implant Surgery: A Comparative Study. Int. J. Oral Maxillofac. Surg. 43: 633-638.

Redondo, C., Ramón-de-Fata, F., Gimbernat, H., Meilán, E., Andrés, G., and Angulo J., C. 2015. Retrograde Intrarenal Surgery with Holmium-YAG Laser Lithotripsy in The Primary Treatment of Renal Lithiasis. Actas Urol Esp. 39(5): 320-326.

Carsten, M. P., Dagmar, S., and Peter Berlien, H. 2008. Laser Treatment of Scars and Keloids – How we do it. Medical Laser Application. 23: 79-86.

Justinus, A. W., Uwe, P., Marc, O. B., Jan, C. S., and Sonja, G. 2011. Treatment of Keloids and Hypertrophic Scars with The Triple-Mode Er:YAG Laser: A Pilot Study. Medical Laser Application. 26: 10-15.

Xue-Qing, W., Julie, M., Olena, K., and Roy, M. K. 2010. Ultrasound Assessed Thickness of Burn Scars in Association with Laser Doppler Imaging Determined Depth of Burns in Paediatric Patients. Burns. 36: 1254-1262.

Sparkes, M., Gross, M., Celotto, S., Zhang, T., and O'Neil, W. 2008. Practical and Theoretical Investigations into Inert Gas Cutting of 304 Stainless Steel Using a High Brightness Fiber Laser. Journal of Laser Applications. 1042-346X: 59-67.

The Worldwide Market for Lasers - Market Review and Forecast 2012. Strategies Unlimited. 5th Edition: 86-110.

OLED Technology Explained. OLED Info. OLED-info.com. Retrieved 15 September 2015.

Coluzzi, J. D., Convissar, A. R., and Roshkind, M. D. 2016. Laser Fundamentals Principles and Practice of Laser Dentistry. Second Edition. 12-26.

Faisal, M., Channa, A. S., Mat, R., and Ani, F. N. 2014. Microwave Assisted Pyrolysis of Waste Biomass Resources for Bio-oil Production. Applied Mechanics and Materials. 554: 307-311.

Ani, F. N. 2014. Microwave Thermal Conversion of Oil Palm and Related Biomass for Biofuels and Biochars. Applied Mechanics and Materials. 606: 223-226.

Mushtaq, F., Mat, R., and Ani, F. N. 2014. Pyrolysis of Solid Palm Waste Biomass with Microwave Absorber under Microwave Irradiation. Applied Mechanics and Materials. 606: 73-77.

Faisal, M., Ramli, M., and Ani, F. N. 2014. The Performance of Intimately Mix and Layer Methods in Microwave Assisted Pyrolysis System. Applied Mechanics and Materials. 554: 150-154.

Salema, A. A., and Ani, F. N. 2012. Pyrolysis of Oil Palm Biomass using Palm Shell Char as Microwave Absorber. Journal of Oil Palm Research. 24: 1497-1510.

Ani, F. N., and Mat Nor, N. S. 2012. Microwave Induced Fast Pyrolysis of Scrap Rubber Tires. AIP Conference Proceedings. 1440(834).

Salema, A. A., and Ani, F. N. 2011. Heating Characteristics of Biomass and Carbonaceous Materials under Microwave Radiation. IEEE 1st Conference on Clean Energy and Technology. 72-77.

Faisal, M., Ramli, M., and Ani, F. N. 2014. A Review on Microwave Assisted Pyrolysis of Coal and Biomass for Fuel Production. Renewable and Sustainable Energy Reviews. 39: 555-574.

Ismail, N., and Ani, F. N. 2015. A Review on Plasma Treatment for the Processing of Solid Waste. Jurnal Teknologi. 72(5).

Ismail, N., Ho, G.S., Amin, N. A. S., and Ani, F. N. 2015. Microwave Plasma Gasification of Oil Palm Biochar. Jurnal Teknologi. 74(10).

Ann, P. Z., Ismail, N., and Ani, F. N. 2014. The Effect of Flame Temperature, Nozzle Position And Swirl Gas On Microwave Plasma Flame. Jurnal Teknologi. 68(3).

Aymeric, G., Nathalie, H. B., Cecile, R., Christian, C., and Jean- Noel, R. 2002. Carbon Nanoparticles from Laser Pyrolysis. Carbon. 40: 2775-2789.

Ehbrecht, M., Faerber, M., Rohmund, F., Smirnov, V., Stelmach, O., and Huisken, F. 1993. CO2 Laser Driven Production of Carbon Clusters and Fullerenes from the Gas Phase. Chemical Physics Letters. 214: 34-38.

Boulanger, L., Andriot, B., Cauchetier, M., and Willaime, F. 1995. Concentric Shelled and Plate-like Graphitic Boron Nitride Nanoparticles Produced by CO2 Laser Pyrolysis. Chemical Physics Letters. 234: 227-232.

Voicu, I., Armand, X., Cauchetier, M., Herlin, N., and Bourcier, S. 1996. Laser Synthesis of Fullerenes from Benzene-oxygen Mixtures. Chemical Physics Letters. 256: 261-268.

Jäger, C., Mutschke, H., Huisken, F., Alexandrescu, R., Morjan, I., Dumitrache, F., Barjega, R., Soare, I., David, B., and Schneeweiss, O. 2006. Iron-carbon Nanoparticles Prepared by CO2 Laser Pyrolysis of Toluene and Iron Pentacarbonyl. Appl. Phys. A. 85: 53-62.

Rosaria, D., Mauro, F., Serena, G., Ernest, P., Emanuele, S., Gaetano, T., and Elisabetta, B. 2013. Synthesis of Ceramic Nanoparticles by Laser Pyrolysis: From Research to Applications. Journal of Analytical and Applied Pyrolysis. 104: 461-469.

Xiang-Xin, B., Jagtoyen, M., Endo, M., Das-Chowdhury, K., Ochoa, R., Derbyshire, F. J., Dresselhaus, M. S., and Eklund, P. C. 1995. Nanoscale Carbon Blacks Produced by CO2 Laser Pyrolysis. J. Mater. Res. 10: 11.

Mordkovich, V. Z., Umnov, A. G., and Inoshita, T. 2000. Nanostructure of Laser Pyrolysis Carbon Blacks: Observation of Multiwall Fullerenes. International Journal of Inorganic Materials. 2: 347-353.

Peters, G., Jerg, K., and Schramm, B. 1998. Characterization of Chromium (III) Oxide Powders Prepared by Laser-induced Pyrolysis of Chromyl Chloride. Materials Chemistry and Physics. 55: 197-201.

Guerrero, G.R., Sevilla, L., and Soriano, C. 2015. Laser and Pyrolysis Removal of Fluorinated Ethylene Propylene Thin Layers Applied on EN AW-5251 Aluminium Substrates. Applied Surface Science. 353: 686-692.

Peligrad, A. A., Schmidt, M. J. J., Li, L., and Spencer, J. T. 2000. Ash Characteristics in Controlled Diode Laser Pyrolysis of Chlorinated Rubber. Optics & Laser Technology. 32: 49-57.

Shafie, S.M., Mahlia, T.M.I., Masjuki, H.H., and Ahmad-Yazid, A. 2012. A Review on Electricity Generation Based on Biomass Residue in Malaysia. Renewable and Sustainable Energy Reviews. 16: 5879-5889.

Maruyama, N., and Eckelman, M. J. 2009. Long-Terms Trends of Electric Efficiencies in Electricity Generation in Developing Countries. Energy Policy. 37: 1678-1686.

Muis, Z. A., Hashim, H., Manan, Z. A., and Taha, F. A. 2010. Optimization of Biomass Usage for Electricity Generation with Carbon Dioxide Reduction in Malaysia. Journal of Applied Sciences. 10(21): 2613-2617.

Hoi, W. K. 1999. Biomass Energy Utilization in Malaysia- Prospects and Problem. Renewable Energy. 16: 1122-1127.

Jamil, M. K., and Ani, F. N. 2000. Rubber: A Source Of Alternative Energy, Fuel And Chemicals. Polymer Recycling. 5(1): 9-14.

Jamil, K., and Ani, F.N. 2000. Techno-economics of Pyrolysis Rubber Waste to Liquid Fuel. Progress in Rubber and Plastic Technology. 16(1): 17-30.

Ani, F. N., and Islam, M. N. 1998. Pyrolytic Recycling of Agro-industrial Solid Wastes In Malaysia. Journal of the Institute of Energy. 71(486): 55-58.

Ani, F. N., and Jamil, M. K. 1997. Pyrolytic Recycling of Waste Rubber Materials to Liquid Fuel. Polymer Recycling. 3(4): 255-262.

Yusof, I. M., Farid, N. A., Zainal, Z. A., and Azman, M. 2008. Characterization of Rice Husk for Cyclone Gasifier. Journal of Applied Sciences. 8(4): 622-628.

Ani, F. N., Salema, A.A., and Hassan, I. 2014. Bio-oils Characteristic from Oil Palm Biomass from Different Fast Pyrolysis Techniques. Applied Mechanics and Materials. 554: 266-270.

Motasemi, F., and Ani, F.N. 2012. A Review on Microwave-assisted Production of Biodiesel. Renewable and Sustainable Energy Reviews. 16: 4719-4733.

Mekhilef, S., Siga, S., and Saidur, R. 2011. A Review on Palm Oil Biodiesel as a Source of Renewable Fuel. Renewable and Sustainable Energy Reviews. 15: 1937-1949.

Atabani, A. E., Silitonga, A. S., Irfan-Anjum, B., Mahlia, T. M. I., Masjuki, H. H., and Mekhilef, S. 2012. A Comprehensive Review on Biodiesel as an Alternative Energy Resource and its Characteristics. Renewable and Sustainable Energy Reviews. 16: 2070-2093.

Saravana, K. T., Abu, S. A., and Ani, F. N. 2014. Bioethanol Production from Sago Pith Waste Using Microwave hydrothermal Hydrolysis Accelerated by Carbon Dioxide. Applied Energy. 128: 277-283.

Anubhuti, G., and Jay Prakash, V. 2015. Sustainable Bio-Ethanol Product Ion from Agro-residues: A Review. Renewable and Sustainable Energy Reviews. 41: 550-567.

Shamsul, N. S., Kamarudin, S. K., Rahman, N. A., and Kofli, N. T. 2014. An Overview on The Production of Bio-methanol as Potential Renewable Energy. Renewable and Sustainable Energy Reviews. 33: 578-588.

Muhammad, M. J., Zarina, A. M., and Ani, F. N. 2015. Granular-Activated Carbon from Mukah Coal Using Carbon Dioxide Activation. Jurnal Teknologi. 75(11).

Jaan, S. T., and Ani, F. N. 2004. Carbon Molecular Sieves Produced from Oil palm Shell for Air Separation. Separation and Purification Technology. 35: 47-54.

Abioye, A. M., and Ani, F. N. 2015. Recent Development in the Production of Activated Carbon Electrodes from Agricultural Waste Biomass for Supercapacitors: A Review. Renewable and Sustainable Energy reviews. 52: 1282-1293.

Faraji, S., and Ani, F. N. 2015. The Development Supercapacitor from Activated Carbon by Electroless Plating- A Review. Renewable and Sustainable Energy Reviews. 42: 823-834.

Prabir, B. 2010. Pyrolysis and Torrefaction. Biomass Gasification and Pyrolysis. Chapter 3: 65-96.

Jun’ichi, H., Toshihide, H., Isao, T., Katsuhiko, M., and Ani, F. N. 2002. Preparing Activated Carbon from Various Nutshells by Chemical Activation with K2CO3. Carbon. 40: 2381-2386.

Jinje, P., Yongwoon, L., Changkook, R., and Young-Kwon, P. 2014. Slow Pyrolysis of Rice Straw: Analysis of Products Properties, Carbon and Energy Yields. Bioresource Technology. 155: 63-70.

Bridgwater, A.V. 2012. Review of Fast Pyrolysis of Biomass and Product Upgrading. Biomass and Bioenergy. 38: 68-94.

Bridgwater, A. V., Meier, D., and Radlein, D. 1999. An Overview of Fast Pyrolysis of Biomass. Organic Geochemistry. 30: 1479-1493.

Salema, A. A., and Ani, F. N. 2011. Microwave Induced Pyrolysis of Oil Palm Biomass. Bioresource Technology. 102: 3388-3395.

Salema, A. A., and Ani, F. N. 2012. Microwave-assisted Pyrolysis of Oil Palm Shell Biomass Using an Overhead Stirrer. Journal of Analytical and Applied Pyrolysis. 96: 162-172.

Salema, A. A., and Ani, F. N. 2012. The Performances of Fixed and Stirred Bed in Microwave Pyrolysis of Biomass. APCBEE Procedia. 3: 188-193.

Zubairu A. B., Salema, A. A., and Ani, F. N. 2013. A New Technique to Pyrolyse Biomass in a Microwave System: Effect of Stirrer Speed. Bioresource Technology. 128: 578-585.

Yu-Fong, H., Pei-Te, C., Wen-Hui, K., and Shang-Lien, L. 2015. Effects of Lignocellulosic Composition and Microwave Power Level on the Gaseous Product of Microwave Pyrolysis. Energy. 89: 974-981.

Qinglong, X., Min, A., Shiyu, L., Bo, Z., Yanling, C., Yiqin, W., Yun, L., Yuhuan, L., Xiangyang, L., Paul, C., and Roger, R. 2015. Fast Microwave-assisted Catalytic Co-pyrolysis of Microalgae and Scum for Bio-oil Product ion. Fuel. 160: 577-582.

Andrea, U., Mamdouh, A. Z., Cedric, B., Franco, B., Luca, R., Mattia, B., Marco, F., and Piero, F. 2015. Bio-oil from Pyrolysis of Wood Pellets Using a Microwave Multimode Oven and Different Microwave Absorbers. Fuel. 464-482.

Faisal, M., Tuan-Amran, T. A., Ramli, M., and Ani, F. N. 2015. Optimization and Characterization of Bio-oil Produced by Microwave Assisted Pyrolysis of Oil Palm Shell Waste Biomass with Microwave Absorber. Bioresource Technology. 190: 442-450.

Thomas, J. M., Andrew, M. H., and Bryan, D. M. Laser Pyrolysis Method for Producing Carbon Nano-spheres. 29 Jun 2006. Google Patents. 27 September 2015. (http://patents. google.com/patent/US20060137487A1).

Wang, L. Y., Yang, S. X., and Jing. 2015. Carbon Nano-composite and Preparation Method. Google Patents. 27 September 2015. (http://patents.google.com/patent/CN103072968B).

Jane, G., Zhang, W., Zhang, M., Beam, R. W., and Tian, X. 2015. Preparation Method for Carbon Nanomaterials with High Graphitization Degree. Google Patents. 27 September 2015. (http://patents.google.com/patent/CN103058169A).

Downloads

Published

2016-02-21

Issue

Section

Science and Engineering

How to Cite

THE APPLICATION OF LASER IN THERMAL TREATMENT OF SOLID PARTICLES AND GAS-PHASE OF BIOMASS PROCESSING-A REVIEW. (2016). Jurnal Teknologi, 78(3). https://doi.org/10.11113/jt.v78.7498