THEORETICAL STUDY ON SLOW-LIGHT GENERATED BY INTEGRATED MICRORING RESONATOR WITH WIDE BANDWIDTH AND HIGH GAIN

Authors

  • M. S. Aziz Laser Center, Ibnu Sina Institute for Scientific and Industrial Research (ISI-SIR) Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • M. S. Affandi Laser Center, Ibnu Sina Institute for Scientific and Industrial Research (ISI-SIR) Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • S. Daud Laser Center, Ibnu Sina Institute for Scientific and Industrial Research (ISI-SIR) Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • M. Bahadoran Laser Center, Ibnu Sina Institute for Scientific and Industrial Research (ISI-SIR) Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • K. T. Chaudhary Laser Center, Ibnu Sina Institute for Scientific and Industrial Research (ISI-SIR) Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • J. Ali Laser Center, Ibnu Sina Institute for Scientific and Industrial Research (ISI-SIR) Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v78.7536

Keywords:

Nonlinear optics, fibers, coupled resonators, slow-light

Abstract

We proposed a new approach to generate slow light transmission with large bandwidth and high buildup factor by using a soliton pulse propagating within integrated ring resonator circuit. The system consisted series of micron-size ring resonator fabricated by using nonlinear InGaAsP/InP material that are laterally coupled together.  For convenience of analysis, optical transfer function for this model is obtained by using z-transform method. Slow light performances were modeled and discuss in this paper. Intensity buildup induced within the series of rings located at left and right sides of the system while strong nonlinear Kerr effect and mutual coupling leads to the spreading frequency bands within the device. Numerical simulation verifies that signal pulse with 45 ps relative delay time and bandwidth of 5.9 GHz (47 pm) are obtained at the communication wavelength around 1550 nm for a 100 ps signal pulse. 

References

Robert W. Boyd. 2009. Slow and Fast Light: Fundamentals And Applications. Journal of Modern Optics. 56:18-19.

Zhao, Y., Zhao, H., Zhang, X., Yuan, B., Zhang, S. 2009. New Mechanisms Of Slow Light And Their Applications. Optics & Laser Technology. 41: 517-525.

Suwanpayak N., Jalil M. A., Aziz M. S., Ali J., Yupapin P. P. 2011. Molecular Buffer Using A PANDA Ring Resonator For Drug Delivery Use. International Journal Of Nanomedicine. 6: 575-580.

Han, X., Zhang, J., Song, H., Wang, L., Teng, J., Wu, P., Zhao, M. 2013. Influence Of Coupling Conditions On The Time Delay Characteristics Of Parallel-Cascaded Optical Waveguide Ring Resonators. Optik - International Journal for Light and Electron Optics. 124: 377-384.

Liu, H. and Yariv, A. 2012. Ideal Optical Delay Lines Based On Tailored-Coupling And Reflecting, Coupled-Resonator Optical Waveguides. Opt. Lett. 37:1964-1966.

Parra, E. and Lowell, J. 2007. Toward Applications of Slow Light Technology. Opt. Photon. News. 18: 40-45.

Xia, F., Sekaric, L. and Vlasov, Y. 2007. Ultracompact Optical Buffers On A Silicon Chip. Nature Photonics. 1: 65-71

Varmazyari, V., Habibiyan, H. and Ghafoorifard, H. 2013. All-optical Tunable Slow Light Achievement In Photonic Crystal Coupled-Cavity Waveguides. Appl. Opt. 52: 6497-6505.

Li, Q., Zhang, Z., Wang, J., Qiu, M. and Su, Y. 2009. Fast Light In Silicon Ring Resonator With Resonance-Splitting. Opt. Express. 17: 933-940

Zadok, A., Eyal, A. and Tur, M. 2011. Stimulated Brillouin Scattering Slow Light In Optical Fibers. Appl. Opt. 50: 38-49.

Lee, M., Zhu, Y., Gauthier, D., Gehm, M. and Neifeld, M. 2011. Information-theoretic Analysis Of A Stimulated-Brillouin-Scattering-Based Slow-Light System. Appl. Opt. 50: 6063-6072.

Saeung, P., and Yupapin, P. P. 2008. Generalized Analysis Of Multiple Ring Resonator Filters: Modeling By Using Graphical Approach. Optik - International Journal for Light and Electron Optics. 119: 465-472.

Tsay, A. and Van, V. 2012. Analysis of Coupled Microring Resonators in Sheared Lattices. Photonics Technology Letters, IEEE. 24: 1625-1627

Dey, S., Mandal, S. S. 2013. Wide Free-Spectral-Range Triple Ring Resonator As Optical Filter. Opt. Eng. 50: 2920-2927.

Fan, G., Li, Y., Liu, X. and Zhen, Z. 2012. The Optimum Design Model Of Two Resonators System. Optics & Laser Technology. 44: 825-829

Aziz, M. S., Jalil, M. A., Suwanpayak, N., Ali, J. and Yupapin, P. P. 2012. Optical Manipulation Of Nano-Micro Needle Array For Large Volume Molecular Diagnosis. Artificial Cells, Blood Substitutes, and Biotechnology. 40(4): 266-270

Tsay, A. and Van, V. 2011. Analytic Theory of Strongly-Coupled Microring Resonator. IEEE Journal of Quantum Electronics. 47: 997-1005

Dey, S. B., Mandal, S. and Jana, N. N. 2011. Quadruple Optical Ring Resonator Based Filter On Silicon-On-Insulator. Optik - International Journal for Light and Electron Optics. 124: 2920-2927.

Sirawattananon, C., Bahadoran, M., Ali, J., Mitatha, S. and Yupapin, P.P. 2012. Analytical Vernier Effects of a PANDA Ring Resonator for Microforce Sensing Application. IEEE Transactions on Nanotechnology. 11: 707-712.

Dey, S. and Mandal, S. 2012. Modeling And Analysis Of Quadruple Optical Ring Resonator Performance As Optical Filter Using Vernier Principle. Optics Communications. 285: 439-446.

Aziz, M. S., Daud, S., Bahadoran, M., Ali, J. and Yupapin, P.P. 2012. Light Pulse In A Modified Add-Drop Optical Filter For Optical Tweezers Generation. Journal of Nonlinear Optical Physics and Materials. 21(4): 1250047.

Yupapin, P.P., Saeung, P. and Li, C. 2007. Characteristics of Complementary Ring-Resonator Add/Drop Filters Modeling By Using Graphical Approach. Optics Communications. 272: 81-86.

Aziz, M. S., Bahadoran, M., Noorden, A. F. A., Chaudhary, K., Ali, J. and Yupapin, P. 2015. Analytical Treatment and Modeling of Integrated Ring Resonator Device by Z-Transform Method for Signals Amplification. J. Comput. Theor. Nanosci. 12: 2253-2258.

Poon, J. K. S., Scheuer, J., Mookherjea, S., Paloczi, G. T., Huang, Y., Yariv, A. 2004. Matrix Analysis Of Microring Coupled-Resonator Optical Waveguides. Optics Express. 12: 90-103.

Aziz, M. S., Suwanpayak, N., Jalil, M. A., Jomtarak, R., Saktioto, T., Ali, J. and Yupapin, P. P. 2012. Gold Nanoparticle Trapping And Delivery For Therapeutic Applications. International Journal of Nanomedicine. 7: 11-17.

Zhang, J., Guo, S. and Li, X. 2013. Independently Tunable Optical Notch Filter Based On Double Ring Resonator Structure. Optik - International Journal for Light and Electron Optics. 124: 1307-1310.

Pornsuwancharoen, N., Ali, J. and Yupapin, P.P. 2009. Optical Solitons in Nonlinear Micro Ring Resonators: Unexpected Results and Applications. Nova Science Pub.

Shimizu, H. and Nakano, Y. 2006. Fabrication And Characterization of an InGaAsP/InP Active Waveguide Optical Isolator With 14.7 dB/mm TE Mode Nonreciprocal Attenuation. Lightwave Technology, Journal of. 24: 38-43.

Seo, J. and Mizumoto, T. 2004. Measurement Of Nonlinear Index Changes In An InGaAsP/InP Waveguide Using An Optical Loop Mirror Interferometer. Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004). Paper CThJ.

Downloads

Published

2016-02-21

Issue

Section

Science and Engineering

How to Cite

THEORETICAL STUDY ON SLOW-LIGHT GENERATED BY INTEGRATED MICRORING RESONATOR WITH WIDE BANDWIDTH AND HIGH GAIN. (2016). Jurnal Teknologi (Sciences & Engineering), 78(3). https://doi.org/10.11113/jt.v78.7536