EFFECT OF MULTI-DESIGN SKIN MODEL AND CHARACTERISTIC ON MONTE CARLO SIMULATION OF LIGHT-SKIN DIFFUSE REFLECTANCE SPECTRA

Authors

  • Muhammad Nur Salihin Yusoff Medical Radiation Programme, School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
  • Mohamad Suhaimi Jaafar Medical Physics and Radiation Sciences Research Group, School of Physics, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia

DOI:

https://doi.org/10.11113/jt.v78.7605

Keywords:

Diffuse reflectance, skin model, Monte Carlo, GPU, CUDAMCML

Abstract

This study was carried out to analyze the impact of four skin models and three skin characteristics on Monte Carlo simulation of light-skin diffuse reflectance spectra. The simulation was performed using graphic processing unit (GPU)-based Monte Carlo code (CUDAMCML). The computation platform was a laptop with 2.3 GHz processor (Intel Core i5-2410M) and supported by NVIDIA’s Compute Unified Device Architecture (CUDA) graphic card (GeForce GT 520M). This analysis showed the importance of taking into account the depth distribution of melanin in designing a multi-layered skin model. Addition of complexity to the model caused only less than two minutes increment of computation time. Increase of melanin concentration reduced the values of diffuse reflectance over the spectrum while the profile of ‘W’ curve became less-defined. Increase of blood concentration also decreased the values of diffuse reflectance (particularly at wavelengths < 600 nm) but the profile of ‘W’ curve became more-defined. Increase of epidermal and dermal thicknesses influenced the diffuse reflectance spectra but not for subcutaneous fat thickness.  

Author Biographies

  • Muhammad Nur Salihin Yusoff, Medical Radiation Programme, School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia

    Senior Lecturer,

    Medical Radiation Programme,

    School of Health Sciences,

    Universiti Sains Malaysia,

  • Mohamad Suhaimi Jaafar, Medical Physics and Radiation Sciences Research Group, School of Physics, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia

    Professor and Dean,

    School of Physics,

    Universiti Sains Malaysia,

References

Yang, M. F., Tuchin, V. V. and Yaroslavsky, A. N. 2009. Principles Of Light-Skin Interaction. In E. D. Baron (Ed.). Light-Based Therapies For Skin Color. London: Springer.

Zonios, G. and Dimon, A. 2011. Modeling Diffuse Reflectance From Homogenous Semi-Infinite Turbid Media For Biological Tissue Applications: A Monte Carlo Study. Biomed. Opt. Express. 2(12): 3284-3294.

Yudovsky, D. and Pilon, L. 2010. Rapid And Accurate Estimation Of Blood Saturation, Melanin Content, And Epidermis Thickness From Spectral Diffuse Reflectance. Appl. Opt. 49(10): 1707-1719.

Lister, T., Wright, P. and Chappell, P. 2010. Spectrophotometers For The Clinical Assessment Of Port-Wine Stain Skin Lesions: A Review. Lasers. Med. Sci. 25: 449-457.

Mantis, G. and Zonios, G. 2009. Simple Two-Layer Reflectance Model For Biological Tissue Applications. Appl. Opt. 48(18): 3490-3496.

Mantis, G. and Zonios, G. 2010. Simple Two-Layer Reflectance Model For Biological Tissue Applications: Lower Absorbing Layer. Appl. Opt. 49(27): 5026-5031.

Ling-Ling, X., Chun-ping, Z., Xin-Yu, W., Ming-Yao, Z., Lian-Shun, Z., Rong-Hua, C., Jian-Dong, Z. and Guang-Yin, Z. 2000. Monte Carlo Simulation Of Light Transport In Five-Layered Skin Tissue. Chin. Phys. Lett. 17(12): 909-911.

Chen, R., Huang, Z., Lui, H., Hamzawi, I., McLean, D. I., Xie, S. and Zeng, H. 2007a. Monte Carlo Simulation Of Cutaneous Reflectance And Fluorescence Measurements - The Effect Of Melanin Contents And Localization. J. Photochem. Photobiol. B: Biol. 86: 219-226.

Chen, R., Li, Y., Lin, H., Huang, B., Chen, G. and Feng, S. 2007b. The Impact Of Blood Content On Skin Spectra. In G. L. Coté and A. V. Priezzhev (ed.) Optical Diagnostics and Sensing VII. USA: SPIE.

Meglinski, I. V. and Matcher, S. J. 2003. Computer Simulation Of The Skin Reflectance Spectra. Comput. Meth. Programs Biomed. 70: 179-186.

Maeda, T., Arakawa, N., Takahashi, M. and Aizu, Y. 2010. Monte Carlo Simulation Of Spectral Reflectance Using A Multilayered Skin Tissue Model. Opt. Rev. 17(3): 223-229.

Baranoski, G. V. G. and Krishnaswamy, A. 2010b. Simulations In Health And Life Sciences. In Light & skin Interactions: Simulations for Computer Graphics Applications. Burlington, USA: Morgan Kaufmann.

Tadakoro, T., Yamaguchi, Y., Batzer, J., Coelho, S. G., Zmudzka, B. Z., Miller, S. A., Wolber, R., Beer, J. Z. and Hearing, V. J. 2005. Mechanismes Of Skin Tanning In Different Racial/Ethnics Groups In Response To Ultraviolet Radiation. J. Invest. Dermatol. 124: 1326-1332.

Baranoski, G. V. G. and Krishnaswamy, A. 2010c. Simulations Challenges. In Light & Skin Interactions: Simulations for Computer Graphics Applications. Burlington, USA: Morgan Kaufmann.

Jacques, S. L. 1998a. Skin Optics. Available from http://omlc.ogi.edu/news/jan98/skinoptics.html. USA: Oregon Medical Laser Center.

Baranoski, G. V. G. and Krishnaswamy, A. 2010a. Bio-Optical Properties Of Human Skin. Light & Skin Interactions: Simulations for Computer Graphics Applications. Burlington, USA: Morgan Kaufmann.

Anderson, R. R. and Parrish, J. A. 1981. The Optics Of Human Skin. J. Invest. Dermatol. 77: 13-19.

Kohen, E., Santus, R. and Hirschberg, J. G. 1995. Optical Properties Of The Skin. Photobiology. USA: Academic Press.

Sinichkin, Y. P., Utz, S. R., Mavliutov, A. H. and Pilipenko, H. A. 1998. In Vivo Fluorescence Spectroscopy Of The Human Skin: Experimental And Models. J. Biomed. Opt. 3(2): 201-211.

Yusoff, M. N. S. and Jaafar, M. S. 2012. Performance Of CUDA GPU In Monte Carlo Simulation Of Light-Skin Diffuse Reflectance Spectra. IEEE-EMBS Conference on Biomedical Engineering and Sciences. Langkawi, Malaysia. 17-19 Disember 2012. 264-269. DOI:10.1109/IECBES.2012.6498056.

Meglinski, I. V. and Matcher, S. J. 2002. Quantitative Assessment Of Skin Layers Absorption And Skin Reflectance Spectra Simulation In The Visible And Near-Infrared Spectral Regions. Physiol. Meas. 23(4): 741-753.

Meglinski, I. V. and Matcher, S. J. 2000. Computational Model Of Human Skin For Reflected Spectra Simulation. Zimnyakov and A. B. Pravdin (ed.). Saratov Fall Meeting "99: Optical Technologies In Biophysics And Medicine. USA: SPIE.

Alerstam, E., Svensson, T. and Anderson-Engels, S. 2009. CUDAMCML Source Code. Available from http://www.atomic.physics.lu.se/biophotonics/our_research/monte_carlo_simulations/gpu_monte_carlo/. Sweden: Lund University.

Sabino, C. P., Deana, A. M., Yoshimura, T. M., Silva, D. F. T. d., Hamblin, M. R., MarthaS.Ribeiro and França, C. M. 2016. The Optical Properties Of Mouse Skin In The Visible And Near Infrared Spectral Regions. J. Photochem. Photobiol. B: Biol. 160: 162-168.

Jonasson, H., Fredriksson, I., Pettersson, A., Larsson, M. and TomasStrömberg. 2015. Oxygen Saturation, Red Blood Cell Tissue Fraction And Speed Resolved Perfusion — A New Optical Method For Microcirculatory Assessment. Microvascular Research. 102: 70-77.

Einstein, G., Udayakumar, K., Aruna, P. R., Koteeswaran, D. and Ganesan, S. 2016. Diffuse Reflectance Spectroscopy For Monitoring Physiological And Morphological Changes In Oral Cancer. Optik. 127: 1479-1485.

Nan, M. and He, Q. 2013. Study on the Effect of Blood Content on Diffuse Reflectance Spectra of Basal Cell Carcinoma Skin Tissue. The Scientific World Journal. ID 192495: 1-6.

Downloads

Published

2016-08-28

Issue

Section

Science and Engineering

How to Cite

EFFECT OF MULTI-DESIGN SKIN MODEL AND CHARACTERISTIC ON MONTE CARLO SIMULATION OF LIGHT-SKIN DIFFUSE REFLECTANCE SPECTRA. (2016). Jurnal Teknologi, 78(9). https://doi.org/10.11113/jt.v78.7605