PHYSICAL DISPERSION OF NANOCARBONS IN COMPOSITES–A REVIEW

Authors

  • Jamal M. A. Alsharef Department of Civil and Structural Engineering, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia
  • Mohd Raihan Taha Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia
  • Tanveer Ahmed Khan Department of Civil and Structural Engineering, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia

DOI:

https://doi.org/10.11113/jt.v79.7646

Keywords:

Nanocarbon tubes, fibres, physical dispersion, ultrasonic, microstructures

Abstract

Recently, nanocarbons (carbon nanofibers (CNFs) and carbon nanotubes (CNTs)) have been used efficiently in numerous research works to significantly enhance the mechanical properties of composites. With their amazing mechanical properties and exceptionally high aspect ratios, nanocarbons (NCs) are seen as one of the most beneficial nanomaterials for nano-reinforcement. The dispersion of NCs is one of the key factors that strongly influence the properties of nanocomposites. Several researches have been carried out with chemical agents to achieve a consistent dispersal of carbon nanomaterials in water, although, if the process is uncontrolled, it can shorten or damage the NCs or even dissolve them, and this can have a negative effect on the composites as well. Therefore, if NCs are to be used as reinforcement for composites, physical methods have to be employed to disperse the NCs before they can be mixed into the composites. This paper presents an overview of the different types of NCs, their different uses and the research conducted for the dispersion of NCs by chemical and physical methods. Furthermore, a summary is given of the measurement and characterization of the dispersibility of NCs.

Author Biography

  • Jamal M. A. Alsharef, Department of Civil and Structural Engineering, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia
    Civil Engineering

References

K. P. De Jong and J. W. Geus. 2000. Carbon Nanofibers: Catalytic Synthesis And Applications. Catalysis Reviews. 42: 481-510.

S. Parveen, S. Rana, and R. Fangueiro. 2013. A Review on Nanomaterial Dispersion, Microstructure, and Mechanical Properties of Carbon Nanotube and Nanofiber Reinforced Cementitious Composites. Journal of Nanomaterials. 2013. 1-19.

W. Brandl, G. Marginean, V. Chirila, and W. Warschewski. 2004. Production And Characterisation Of Vapour Grown Carbon Fiber/Polypropylene Composites. Carbon. 42: 5-9.

E. Hammel, X. Tang, M. Trampert, T. Schmitt, K. Mauthner, A. Eder, et al. 2004. Carbon Nanofibers For Composite Applications. Carbon. 42: 1153-1158.

C. Kuzuya, W. Inâ€Hwang, S. Hirako, Y. Hishikawa, and S. Motojima. 2002. Preparation, Morphology, And Growth Mechanism Of Carbon Nanocoils. Chemical Vapor Deposition. 8: 57-62.

M. S. Konsta-Gdoutos, Z. S. Metaxa, and S. P. Shah. 2010. Multi-scale Mechanical And Fracture Characteristics And Early-Age Strain Capacity Of High Performance Carbon Nanotube/Cement Nanocomposites. Cement and Concrete Composites. 32: 110-115.

V. Mordkovich. 2003. Carbon Nanofibers: A New Ultrahigh-Strength Material For Chemical Technology. Theoretical Foundations of Chemical Engineering. 37: 429-438.

K. Mukhopadhyay, D. Porwal, D. Lal, K. Ram, and G. N. Mathur. 2004. Synthesis Of Coiled/Straight Carbon Nanofibers By Catalytic Chemical Vapor Deposition. Carbon. 42: 3254-3256.

S. Iijima. 1991. Helical Microtubules Of Graphitic Carbon. Nature. 354: 56-58.

M. Reibold, P. Paufler, A. A. Levin, W. Kochmann, N. Patzke, and D. C. Meyer. 2006. Materials: Carbon Nanotubes In An Ancient Damascus Sabre. Nature. 444: 286.

A. K.-T. Lau and D. Hui. 2002. The Revolutionary Creation Of New Advanced Materials—Carbon Nanotube Composites. Composites Part B: Engineering. 33: 263-277.

N. Grobert. 2007. Carbon Nanotubes–Becoming Clean, Materials Today. 10: 28-35.

B. Philip. 1996. The Perfect Nano-Tubes. Nature. 382: 207-8.

Y. S. Wang, X. S. Cheng, and L. Wang. 2009. Regularity Of VEGF Expression In Bone Marrow Mesenchymal Stem Cells Under Hypoxia. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 25: 475-7.

M. S. Morsy, S. H. Alsayed, and M. Aqel. 2011. Hybrid Effect Of Carbon Nanotube And Nano-Clay On Physico-Mechanical Properties Of Cement Mortar. Construction and Building Materials. 25: 145-149.

H. Yan, A. Gong, H. He, J. Zhou, Y. Wei, and L. Lv. 2006. Adsorption Of Microcystins By Carbon Nanotubes, Chemosphere. 62: 142-148.

A. Peigney, C. Laurent, E. Flahaut, R. Bacsa, and A. Rousset. 2001. Specific Surface Area Of Carbon Nanotubes And Bundles Of Carbon Nanotubes. Carbon. 39: 507-514.

H.-M. Cheng, Q.-H. Yang, and C. Liu. 2001. Hydrogen Storage In Carbon Nanotubes. Carbon. 39: 1447-1454.

A. Dillon and M. Heben. 2001. Hydrogen Storage Using Carbon Adsorbents: Past, Present And Future. Applied Physics A. 72: 133-142.

lango, Vijaya, and Avika Gupta. 2013. Carbon Nanotubes–A Successful Hydrogen Storage Medium. World Academy of Science, Engineering and Technology. 7(9): 678-681.

C. Chen and X. Wang. 2006. Adsorption of Ni (II) from Aqueous Solution Using Oxidized Multiwall Carbon Nanotubes. Industrial & Engineering Chemistry Research. 45: 9144-9149.

Rao, Gadupudi Purnachadra, Chungsying Lu, and Fengsheng Su. 2007. Sorption Of Divalent Metal Ions From Aqueous Solution By Carbon Nanotubes: A Review. Separation And Purification Technology. 58(1): 224-231.

X. Wang, C. Chen, W. Hu, A. Ding, D. Xu, and X. Zhou. 2005. Sorption of 243Am (III) To Multiwall Carbon Nanotubes. Environmental Science & Technology. 39: 2856-2860.

R. Nuraini and M. R. Taha. 2010. Adsorption Behavior Of Phenol On Residual Soil-Multiwalled Carbon Nanotubes Mixtures. Environmental Engineering and Applications (ICEEA), 2010 International Conference on. 157-159.

J. Makar and J. Beaudoin. 2004. Carbon Nanotubes And Their Application In The Construction Industry. SPECIAL PUBLICATION-ROYAL SOCIETY OF CHEMISTRY. 292: 331-342.

P. G. Collins and P. Avouris. 2000. Nanotubes For Electronics, Scientific American. 283: 62-69.

J.-P. Salvetat, J.-M. Bonard, N. Thomson, A. Kulik, L. Forro, W. Benoit, et al. 1999. Mechanical Properties Of Carbon Nanotubes. Applied Physics A. 69: 255-260.

T. Belytschko, S. Xiao, G. Schatz, and R. Ruoff. 2002. Atomistic Simulations Of Nanotube Fracture. Physical Review B. 65: 235-430.

A. Cwirzen, K. Habermehl-Cwirzen, and V. Penttala. 2008. Surface Decoration Of Carbon Nanotubes And Mechanical Properties Of Cement/Carbon Nanotube Composites, Advances in Cement Research. 20: 65-73.

Lourie, O., D. M. Cox, and H. D. 1998. Wagner. Buckling And Collapse Of Embedded Carbon Nanotubes. Physical Review Letters. 81(8): 1638.

Y. Ando.1994. The Preparation Of Carbon Nanotubes. Fullerenes, Nanotubes, and Carbon Nanostructures. 2: 173-180.

W. K. Maser, A. M. Benito, and M. T. MartıÌnez. 2002. Production Of Carbon Nanotubes: The Light Approach. Carbon. 40: 1685-1695.

Ç. Öncel and Y. Yürüm. 2006. Carbon Nanotube Synthesis Via The Catalytic CVD Method: A Review On The Effect Of Reaction Parameters. Fullerenes, Nanotubes, and Carbon Nonstructures. 14: 17-37.

X. Li, A. Cao, Y. J. Jung, R. Vajtai, and P. M. Ajayan. 2005. Bottom-up Growth Of Carbon Nanotube Multilayers: Unprecedented Growth. Nano Letters. 5: 1997-2000.

S. Musso, S. Porro, M. Giorcelli, A. Chiodoni, C. Ricciardi, and A. Tagliaferro. 2007. Macroscopic Growth Of Carbon Nanotube Mats And Their Mechanical Properties. Carbon. 45: 1133-1136.

J. W. Mintmire, B. I. Dunlap, and C. T. White. 1992. Are Fullerene Tubules Metallic? Phys Rev Lett. 68: 631-634.

R. Dekkers.1999. Apple Juice And The Chemical-Contact Softening Of Gallstones. Lancet. 354: 2171.

S. Iijima. 2002. Carbon Nanotubes: Past, Present, And Future. Physica B: Condensed Matter. 323: 1-5.

I. Campillo, J. Dolado, and A. Porro. 2004. High-performance Nanostructured Materials For Construction. SPECIAL PUBLICATION-ROYAL SOCIETY OF CHEMISTRY. 292: 215-226.

C. Li and T.-W. Chou. 2003. Elastic Moduli Of Multi-Walled Carbon Nanotubes And The Effect Of Van Der Waals Forces. Composites Science and Technology. 63: 1517-1524.

N. Khandoker, S. Hawkins, R. Ibrahim, C. Huynh, and F. Deng. 2011. Tensile Strength Of Spinnable Multiwall Carbon Nanotubes. Procedia Engineering. 10: 2572-2578.

E. T. Thostenson, Z. Ren, and T.-W. Chou. 2001. Advances In The Science And Technology Of Carbon Nanotubes And Their Composites: A Review. Composites science and Technology. 61: 1899-1912.

E. W. Wong, P. E. Sheehan, and C. M. Lieber. 1997. Nanobeam Mechanics: Elasticity, Strength, And Toughness Of Nanorods And Nanotubes. Science. 277: 1971-1975.

A. M. Esawi, K. Morsi, A. Sayed, A. A. Gawad, and P. Borah. 2009. Fabrication And Properties Of Dispersed Carbon Nanotube–Aluminum Composites. Materials Science and Engineering: A. 508: 167-173.

W. Chen, J. Tu, L. Wang, H. Gan, Z. Xu, and X. Zhang. 2003. Tribological Application Of Carbon Nanotubes In A Metal-Based Composite Coating And Composites/ Carbon. 41: 215-222.

S. Polizu, M. Maugey, S. Poulin, P. Poulin, and L. H. Yahia. 2006. Nanoscale Surface Of Carbon Nanotube Fibers For Medical Applications: Structure And Chemistry Revealed By TOF-SIMS Analysis. Applied Surface Science. 252: 6750-6753.

T. Wei, Z. Fan, G. Luo, and F. Wei. 2008. A New Structure For Multi-Walled Carbon Nanotubes Reinforced Alumina Nanocomposite With High Strength And Toughness. Materials Letters. 62: 641-644.

J. N. Coleman, U. Khan, W. J. Blau, and Y. K. Gun’ko. 2006. Small But Strong: A Review Of The Mechanical Properties Of Carbon Nanotube–Polymer Composites. Carbon. 44: 1624-1652.

R. Andrews and M. Weisenberger. 2004. Carbon Nanotube Polymer Composites. Current Opinion in Solid State and Materials Science. 8: 31-37.

D. Qian, E. C. Dickey, R. Andrews, and T. Rantell. 2000. Load Transfer And Deformation Mechanisms In Carbon Nanotube-Polystyrene Composites. Applied Physics Letters. 76: 2868-2870.

H. Wagner, O. Lourie, Y. Feldman, and R. Tenne. 1998. Stress-induced Fragmentation Of Multiwall Carbon Nanotubes In A Polymer Matrix. Applied Physics Letters. 72: 188-190.

P. N. Balaguru and S. P. Shah. 1992. Fiber-reinforced cement Composites. New York: McGraw-Hill.

Makar, J. M., Margeson, J., Luh, J. 2005. Carbon Nanotube/Cement Composites–Early Results And Potential Applications. In: Banthia N, Uomoto T, Bentur A, Shah SP, Editors. Proceedings Of 3rd International Conference On Construction Materials: Performance, Innovations And Structural Implications. Vancouver, BC August 22–24. 1-10.

Y. Hu, D. Luo, P. Li, Q. Li, and G. Sun. 2014. Fracture Toughness Enhancement Of Cement Paste With Multi-Walled Carbon Nanotubes. Construction and Building Materials. 70: 332-338.

G. Y. Li, P. M. Wang, and X. Zhao. 2005. Mechanical Behavior And Microstructure Of Cement Composites Incorporating Surface-Treated Multi-Walled Carbon Nanotubes. Carbon. 43: 1239-1245.

G. Y. Li, P. M. Wang, and X. Zhao. 2007. Pressure-Sensitive Properties And Microstructure Of Carbon Nanotube Reinforced Cement Composites. Cement and Concrete Composites. 29: 377-382.

B. Zou, S. J. Chen, A. H. Korayem, F. Collins, C. M. Wang, and W. H. Duan. 2015. Effect Of Ultrasonication Energy On Engineering Properties Of Carbon Nanotube Reinforced Cement Pastes. Carbon. 85: 212-220.

M. S. Konsta-Gdoutos, Z. S. Metaxa, and S. P. Shah. 2010. Highly Dispersed Carbon Nanotube Reinforced Cement Based Materials. Cement and Concrete Research. 40: 1052-1059.

R. K. Abu Al-Rub, A. I. Ashour, and B. M. Tyson. 2012. On The Aspect Ratio Effect Of Multi-Walled Carbon Nanotube Reinforcements On The Mechanical Properties Of Cementitious Nanocomposites. Construction and Building Materials. 35: 647-655.

B. Han, Z. Yang, X. Shi, and X. Yu. 2013. Transport Properties Of Carbon-Nanotube/Cement Composites. Journal Of Materials Engineering And Performance. 22: 184-189.

A. Cwirzen, K. Habermehl-Cwirzen, A. Nasibulin, E. Kaupinen, P. Mudimela, and V. Penttala. 2009. SEM/AFM Studies Of Cementitious Binder Modified By MWCNT And Nano-Sized Fe Needles. Materials Characterization. 60: 735-740.

T. Manzur and N. Yazdani. 2010. Strength Enhancement Of Cement Mortar With Carbon Nanotubes: Early Results And Potential. Transportation Research Record: Journal of the Transportation Research Board. 102-108.

G. Yakovlev, J. Kerienė, A. Gailius, and I. Girnienė. 2006. Cement Based Foam Concrete Reinforced By Carbon Nanotubes. Materials Science [Medžiagotyra]. 12: 147-151.

T. Nochaiya and A. Chaipanich. 2011. Behavior Of Multi-Walled Carbon Nanotubes On The Porosity And Microstructure Of Cement-Based Materials. Applied Surface Science. 257: 1941-1945.

B. Han, X. Yu, and J. Ou. 2011. Multifunctional And Smart Carbon Nanotube Reinforced Cement-Based Materials. In Nanotechnology In Civil Infrastructure. ed: Springer. 1-47.

R. K. A. Al-Rub, A. I. Ashour, and B. M. Tyson. 2012. On The Aspect Ratio Effect Of Multi-Walled Carbon Nanotube Reinforcements On The Mechanical Properties Of Cementitious Nanocomposites. Construction and Building Materials. 35: 647-655.

Z. S. Metaxa, J.-W. T. Seo, M. S. Konsta-Gdoutos, M. C. Hersam, and S. P. Shah. 2012. Highly Concentrated Carbon Nanotube Admixture For Nano-Fiber Reinforced Cementitious Materials. Cement and Concrete Composites. 34: 612-617.

P. Ludvig, L. Ladeira, J. Calixto, I. Gaspar, and V. Melo. 2009. In-situ Synthesis Of Multiwall Carbon Nanotubes On Portland Cement Clinke. In 11th International Conference on Advanced Materials, Rio de Janeiro, Brazil. 2009.

S. P. Shah, M. Konsta-Gdoutos, Z. Metaxa, and P. Mondal. 2009. Nanoscale Modification Of Cementitious Materials. In Nanotechnology in Construction. 3rd ed: Springer. 125-130.

H. Miyagawa, M. J. Rich, and L. T. Drzal. 2006. Thermo-Physical Properties Of Epoxy Nanocomposites Reinforced By Carbon Nanotubes And Vapor Grown Carbon Fibers. Thermochimica acta. 442: 67-73.

G. Tibbetts, M. Lake, K. Strong, and B. Rice. 2007. A Review Of The Fabrication And Properties Of Vapor-Grown Carbon Nanofiber/Polymer Composites. Composites Science and Technology. 67: 1709-1718.

M. Endo, Y. A. Kim, M. Ezaka, K. Osada, T. Yanagisawa, T. Hayashi, et al. 2003. Selective And Efficient Impregnation Of Metal Nanoparticles On Cup-Stacked-Type Carbon Nanofibers. Nano Letters. 3: 723-726.

T. Uchida, D. P. Anderson, M. L. Minus, and S. Kumar. 2006. Morphology And Modulus Of Vapor Grown Carbon Nano Fibers. Journal of Materials Science. 41: 5851-5856.

Y. L. Mo, R. H. Roberts. 2013. Carbon nanofiber Concrete For Damage Detection Of Infrastructure. In: R. Maguire (Ed.). Advances in Nanofibers, InTech, Rijeka. 125-143.

J. G. Lawrence, L. M. Berhan, and A. Nadarajah. 2008. Structural transformation Of Vapor Grown Carbon Nanofibers Studied by HRTEM. Journal of Nanoparticle Research. 10: 1155-1167.

J. G. Lawrence, L. M. Berhan, and A. Nadarajah. 2008. Elastic Properties And Morphology Of Individual Carbon Nanofibers. Acs Nano. 2: 1230-1236.

T. Ozkan, M. Naraghi, and I. Chasiotis. 2010. Mechanical Properties Of Vapor Grown Carbon Nanofibers. Carbon. 48: 239-244.

H. G. Tennent. 1987. Carbon Fibrils, Method For Producing Same And Compositions Containing Same. ed: Google Patents.

K. Lafdi and M. Matzek. 2003. Carbon Nanofibers As A Nano-Reinforcement For Polymeric Nanocomposites. In The 35th international SAMPE technical conference. 2003.

J. Y. Howe, G. G. Tibbetts, C. Kwag, and M. L. Lake. 2006. Heat Treating Carbon Nanofibers For Optimal Composite Performance. Journal of Materials Research. 21: 2646-2652.

P.-W. Chen and D. Chung. 1993. Concrete Reinforced With Up To 0.2 Vol% Of Short Carbon Fibres. Composites. 24: 33-52.

X. Fu and D. D. L. Chung. 1998. Submicron-diameter-carbon-filament cement-matrix composites, Carbon. 36: 459-462.

H. Li, H.-g. Xiao, J. Yuan, and J. Ou. 2004. Microstructure Of Cement Mortar With Nano-Particles. Composites Part B: Engineering. 35: 185-189.

H. Li, M.-h. Zhang, and J.-p. Ou. 2006. Abrasion Resistance Of Concrete Containing Nano-Particles For Pavement. Wear. 260: 1262-1266.

V. C. Li. 2002. Large Volume, Highâ€Performance Applications Of Fibers In Civil Engineering. Journal of Applied Polymer Science. 83: 660-686.

R. N. Howser, H. B. Dhonde, and Y. L. Mo. 2011. Self-Sensing Of Carbon Nanofiber Concrete Columns Subjected To Reversed Cyclic Loading. Smart Materials and Structures. 20: 085031.

Z. Metaxa, M. Konsta-Gdoutos, and S. Shah. 2010. Carbon Nanofiber-Reinforced Cement-Based Materials, Transportation Research Record. Journal of the Transportation Research Board. 2142: 114-118.

S. Chen, F. Collins, A. Macleod, Z. Pan, W. Duan, and C. Wang. 2011. Carbon Nanotube–Cement Composites: A Retrospect. The IES Journal Part A: Civil & Structural Engineering. 4: 254-265.

I. Szleifer and R. Yerushalmi-Rozen. 2005. Polymers And Carbon Nanotubes—Dimensionality, Interactions And Nanotechnology. Polymer. 46: 7803-7818.

B. M. Tyson, R. K. Abu Al-Rub, A. Yazdanbakhsh, and Z. Grasley. 2011. Carbon Nanotubes And Carbon Nanofibers For Enhancing The Mechanical Properties Of Nanocomposite Cementitious Materials. Journal of Materials in Civil Engineering. 23: 1028-1035.

Z. S. Metaxa, M. S. Konsta-Gdoutos, and S. P. Shah. 2013. Carbon Nanofiber Cementitious Composites: Effect Of Debulking Procedure On Dispersion And Reinforcing Efficiency. Cement and Concrete Composites. 36: 25-32.

S. Shah, M. Konsta-Gdoutos, and Z. Metaxa. 2010. Exploration Of Fracture Characteristics, Nanoscale Properties And Nanostructure Of Cementitious Matrices With Carbon Nanotubes And Carbon Nanofibers. In Proceedings Of The 7th International Conference On Fracture Mechanics Of Concrete And Concrete Structures. 2010.

A. Peyvandi, L. A. Sbia, P. Soroushian, and K. Sobolev. 2013. Effect Of The Cementitious Paste Density On The Performance Efficiency Of Carbon Nanofiber In Concrete Nanocomposite. Construction and Building Materials. 48: 265-269.

A. M. Hunashyal, S. J. Lohitha, S. S. Quadri, and N. R. Banapurmath. 2011. Experimental Investigation Of The Effect Of Carbon Nanotubes And Carbon Fibres On The Behaviour Of Plain Cement Composite Beams. The IES Journal Part A: Civil & Structural Engineering. 4: 29-36.

C. Gay and F. Sanchez. 2010. Performance Of Carbon Nanofiber-Cement Composites With A High-Range Water Reducer. Transportation Research Record: Journal of the Transportation Research Board. 109-113.

A. Keyvani. 2007. Huge Opportunities For Industry Of Nanofibrous Concrete Technology. International Journal of Nanoscience and Nanotechnology. 3: 3-12.

Z. Metaxa, M. Konsta-Gdoutos, and S. Shah. 2010. Mechanical Properties And Nanostructure Of Cement-Based Materials Reinforced With Carbon Nanofibers And Polyvinyl Alcohol (PVA) Microfibers. ACI Special Publication. 270.

A. Jorio, G. Dresselhaus, and M. S. Dresselhaus. 2007. Carbon Nanotubes: Advanced Topics In The Synthesis, Structure, Properties And Applications. 111: Springer Science & Business Media.

Z. Wang, L. Ci, L. Chen, S. Nayak, P. M. Ajayan, and N. Koratkar. 2007. Polarity-Dependent Electrochemically Controlled Transport Of Water Through Carbon Nanotube Membranes. Nano Letters. 7: 697-702.

I. Kang, Y. Y. Heung, J. H. Kim, J. W. Lee, R. Gollapudi, S. Subramaniam, et al. 2006. Introduction To Carbon Nanotube And Nanofiber Smart Materials. Composites Part B: Engineering. 37: 382-394.

R. H. Baughman. 1999. Carbon Nanotube Actuators. Science. 284: 1340-1344.

J. Hilding, E. A. Grulke, Z. George Zhang, and F. Lockwood. 2003. Dispersion of Carbon Nanotubes in Liquids. Journal of Dispersion Science and Technology. 24: 1-41.

A. Sobolkina, V. Mechtcherine, V. Khavrus, D. Maier, M. Mende, M. Ritschel, et al. 2012. Dispersion Of Carbon Nanotubes And Its Influence On The Mechanical Properties Of The Cement Matrix. Cement and Concrete Composites. 34: 1104-1113.

K. D. Ausman, R. Piner, O. Lourie, R. S. Ruoff, and M. Korobov. 2000. Organic Solvent Dispersions Of Single-Walled Carbon Nanotubes: Toward Solutions Of Pristine Nanotubes. The Journal of Physical Chemistry B. 104: 8911-8915.

L. Vaisman, G. Marom, and H. D. Wagner. 2006. Dispersions of Surface-Modified Carbon Nanotubes in Water-Soluble and Water-Insoluble Polymers. Advanced Functional Materials. 16: 357-363.

J. Pang, G. Xu, S. Yuan, Y. Tan, and F. He. 2009. Dispersing Carbon Nanotubes In Aqueous Solutions By A Silicon Surfactant: Experimental And Molecular Dynamics Simulation Study. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 350: 101-108.

H. Peng, L. B. Alemany, J. L. Margrave, and V. N. Khabashesku. 2003. Sidewall Carboxylic Acid Functionalization Of Single-Walled Carbon Nanotubes. Journal of the American Chemical Society. 125: 15174-15182.

Y. Wang, Z. Iqbal, and S. V. Malhotra. 2005. Functionalization Of Carbon Nanotubes With Amines And Enzymes. Chemical Physics Letters. 402: 96-101.

Y. V. Lavskaya, L. Bulusheva, A. Okotrub, N. Yudanov, D. Vyalikh, and A. Fonseca. 2009. Comparative Study Of Fluorinated Single-And Few-Wall Carbon Nanotubes By X-Ray Photoelectron And X-Ray Absorption Spectroscopy. Carbon. 47: 1629-1636.

A. Felten, C. Bittencourt, J.-J. Pireaux, G. Van Lier, and J.-C. Charlier. 2005. Radio-Frequency Plasma Functionalization Of Carbon Nanotubes Surface O2, NH3, and CF4 Treatments. Journal of Applied Physics. 98: 074308.

Y. Wang, Z. Iqbal, and S. Mitra. 2006. Rapidly Functionalized, Water-Dispersed Carbon Nanotubes At High Concentration. Journal of the American Chemical Society. 128: 95-99.

J. M. González-Domínguez, Y. Martínez-Rubí, A. M. Díez-Pascual, A. Ansón-Casaos, M. Gómez-Fatou, B. Simard, et al. 2012. Reactive Fillers Based On Swcnts Functionalized With Matrix-Based Moieties For The Production Of Epoxy Composites With Superior And Tunable Properties. Nanotechnology. 23: 285702.

J. U. Lee, J. Huh, K. H. Kim, C. Park, and W. H. Jo. 2007. Aqueous Suspension Of Carbon Nanotubes Via Non-Covalent Functionalization With Oligothiophene-Terminated Poly (ethylene glycol). Carbon. 45: 1051-1057.

E. Nativ-Roth, R. Shvartzman-Cohen, C. Bounioux, M. Florent, D. Zhang, I. Szleifer, et al. 2007. Physical Adsorption Of Block Copolymers To SWNT And MWNT: A Nonwrapping Mechanism. Macromolecules. 40: 3676-3685.

X. Xin, G. Xu, T. Zhao, Y. Zhu, X. Shi, H. Gong, et al. 2008. Dispersing Carbon Nanotubes In Aqueous Solutions By A Starlike Block Copolymer. The Journal of Physical Chemistry C. 112: 16377-16384.

R. Haggenmueller, S. S. Rahatekar, J. A. Fagan, J. Chun, M. L. Becker, R. R. Naik, et al. 2008. Comparison Of The Quality Of Aqueous Dispersions Of Single Wall Carbon Nanotubes Using Surfactants And Biomolecules. Langmuir. 24: 5070-5078.

F. Sanchez, L. Zhang, and C. Ince. 2009. Multi-Scale Performance And Durability Of Carbon Nanofiber/Cement Composites. In Nanotechnology in Construction 3. ed: Springer. 345-350.

S. Shah, M. Konsta-Gdoutos, and Z. Metaxa. 2011. Advanced Cement Based Nanocomposites. Recent Advances in Mechanics. ed: Springer. 313-327.

A. P. Singh, M. Mishra, A. Chandra, and S. Dhawan. 2011. Graphene Oxide/ferrofluid/cement Composites For Electromagnetic Interference Shielding Application. Nanotechnology. 22: 465701.

A. P. Singh, B. K. Gupta, M. Mishra, A. Chandra, R. Mathur, and S. Dhawan. 2013. Multiwalled Carbon Nanotube/Cement Composites With Exceptional Electromagnetic Interference Shielding Properties. Carbon. 56: 86-96.

Y. Saez de Ibarra, J. Gaitero, E. Erkizia, and I. Campillo. 2006. Atomic Force Microscopy And Nanoindentation Of Cement Pastes With Nanotube Dispersions. Physica Status Solidi (A). 203: 1076-1081.

D. T. R. Figueiredo, A. A. S. Correia, D. Hunkeler, and M. G. B. V. Rasteiro. 2015. Surfactants For Dispersion Of Carbon Nanotubes Applied In Soil Stabilization. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 480: 405-412.

Y. Mo and R. H. Roberts. 2013. Carbon Nanofiber Concrete for Damage Detection of Infrastructure. ed: InTech.

X. Yu and E. Kwon. 2009. A Carbon Nanotube/Cement Composite With Piezoresistive Properties. Smart Materials and Structures. 18: 055010.

A. Yazdanbakhsh, Z. Grasley, B. Tyson, and R. A. Al-Rub. 2009. Carbon Nano Filaments In Cementitious Materials: Some Issues On Dispersion And Interfacial Bond. ACI Special Publication. 267.

T. Kowald and R. Trettin. 2004. Influence Of Surface-Modified Carbon Nanotubes On Ultrahigh Performance Concrete. Proceedings of International Symposium on Ultra High Performance Concrete. 195-203.

L. Chen, H. Xie, Y. Li, and W. Yu. 2008. Surface Chemical Modification of Multiwalled Carbon Nanotubes by a Wet-Mechanochemical Reaction. Journal of Nanomaterials 2008. 1-5.

H. Pan, L. Liu, Z.-X. Guo, L. Dai, F. Zhang, D. Zhu, et al. 2003. Carbon Nanotubols From Mechanochemical Reaction. Nano Letters. 3: 29-32.

Abu Al-Rub, Rashid K., Bryan M. Tyson, Ardavan Yazdanbakhsh, and Zachary Grasley. 2011. Mechanical Properties Of Nanocomposite Cement Incorporating Surface-Treated And Untreated Carbon Nanotubes And Carbon Nanofibers. Journal of Nanomechanics and Micromechanics. 2(1): 1-6.

L. Cui. 2013. Incorporation of Multiwalled Carbon Nanotubes to Ordinary Portland Cement (OPC): Effects on Mechanical Properties. Advanced Materials Research. 641-642: 436-439.

H. J. Kong, S. G. Bike, and V. C. Li. 2006. Effects Of A Strong Polyelectrolyte On The Rheological Properties Of Concentrated Cementitious Suspensions. Cement and Concrete Research. 36: 851-857.

M. Alkan, Ö. Demirbaş, and M. Doğan. 2005. Electrokinetic Properties Of Kaolinite In Mono-And Multivalent Electrolyte Solutions. Microporous and Mesoporous Materials. 83: 51-59.

D. Niriella and R. Carnahan. 2006. Comparison Study Of Zeta Potential Values Of Bentonite In Salt Solutions. Journal Of Dispersion Science And Technology. 27: 123-131.

M. Janek and G. Lagaly. 2003. Interaction Of A Cationic Surfactant With Bentonite: A Colloid Chemistry Study. Colloid and Polymer Science. 281: 293-301.

M. Clifton, T. Nguyen, and R. Frost. 2007. Effect Of Ionic Surfactants On Bauxite Residues Suspensions Viscosity. Journal Of Colloid And Interface Science. 307: 572-577.

O. Sadek, W. Mekhemer, F. Assaad, and B. Mostafa. 2006. Adsorption of Poly (4â€sodium styrene sulfonate) on Kaolinite clays. Journal Of Applied Polymer Science. 100: 1712-1719.

A. Alemdar, N. Öztekin, F. Erim, Ö. Ece, and N. Güngör. 2005. Effects Of Polyethyleneimine Adsorption On Rheology Of Bentonite Suspensions. Bulletin of Materials Science. 28: 287-291.

S. Tunç and O. Duman. 2008. The Effect Of Different Molecular Weight Of Poly(Ethylene Glycol) On The Electrokinetic And Rheological Properties Of Na-Bentonite Suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 317: 93-99.

I. S. Oweis and R. P. Khera. 1990. Geotechnology Of Waste Management. Butterworths.

M. R. Taha, E. Ismail, Z. Chik, Y. de Miguel, A. Porro, and P. Bartos. 2005. Some Nano Aspects And Concepts In Geotechnology. 2nd Int. Symp. on Nanotechnology in Construction, Bilbao, Spain 2005. 373-381.

J. Vera-Agullo, V. Chozas-Ligero, D. Portillo-Rico, M. García-Casas, A. Gutiérrez-Martínez, J. Mieres-Royo, et al. 2009. Mortar And Concrete Reinforced With Nanomaterials. Nanotechnology in Construction 3. ed: Springer 2009. 383-388.

A. Edwards and J. Bremner. 1967. DISPERSION OF SOIL PARTICLES BY SONIC VIBRATION1. Journal of Soil Science. 18: 47-63.

A. A. Firoozi, M. R. Taha, A. A. Firoozi, and T. A. Khan. 2015. Effect Of Ultrasonic Treatment On Clay Microfabric Evaluation By Atomic Force Microscopy. Measurement. 66: 244-252.

K. Gopalakrishnan, B. Birgisson, P. Taylor, and N. O. Attoh-Okine. 2011. Nanotechnology In Civil Infrastructure. Springer 2011.

A. Chaipanich, T. Nochaiya, W. Wongkeo, and P. Torkittikul 2010. Compressive Strength And Microstructure Of Carbon Nanotubes–Fly Ash Cement Composites. Materials Science and Engineering: A. 527: 1063-1067.

L. Jiang, L. Gao, and J. Sun. 2003. Production Of Aqueous Colloidal Dispersions Of Carbon Nanotubes. Journal of Colloid and Interface Science. 260: 89-94.

T. Yasumitsu, G. Liu, J.-M. Leveque, S. Aonuma, L. Duclaux, T. Kimura, et al. 2013. A Rosette Cooling Cell: More Effective Container For Solubilization Of Single-Walled Carbon Nanotubes Under Probe-Type Ultrasonic Irradiation. Ultrasonics sonochemistry. 20: 37-39.

F. Inam, T. Vo, J. P. Jones, and X. Lee. 2013. Effect Of Carbon Nanotube Lengths On The Mechanical Properties Of Epoxy Resin: An Experimental Study. Journal of Composite Materials. 47: 2321-2330.

S. J. Chen, B. Zou, F. Collins, X. L. Zhao, M. Majumber, and W. H. Duan. 2014. Predicting The Influence Of Ultrasonication Energy On The Reinforcing Efficiency Of Carbon Nanotubes. Carbon. 77: 1-10.

E. F. de la Cruz, Y. Zheng, E. Torres, W. Li, W. Song, and K. Burugapalli. 2012. Zeta Potential Of Modified Multi-Walled Carbon Nanotubes In Presence Of Poly (vinyl alcohol) Hydrogel. International Journal of Electrochemical Science. 7: 3577-3590.

A. A. S. Correia, P. D. F. Casaleiro, and M. G. B. V. Rasteiro. 2015. Applying Multiwall Carbon Nanotubes for Soil Stabilization. Procedia Engineering. 102: 1766-1775.

L. Dumée, K. Sears, J. Schütz, N. Finn, M. Duke, and S. Gray. 2013. Influence of the Sonication Temperature on the Debundling Kinetics of Carbon Nanotubes in Propan-2-ol. Nanomaterials. 3: 70-85.

A. Yazdanbakhsh, Z. Grasley, B. Tyson, and R. Abu Al-Rub. 2010. Distribution Of Carbon Nanofibers And Nanotubes In Cementitious Composites. Transportation Research Record: Journal of the Transportation Research Board. 89-95.

C. P. Huynh and S. C. Hawkins. 2010. Understanding The Synthesis Of Directly Spinnable Carbon Nanotube Forests. Carbon. 48: 1105-1115.

B. White, S. Banerjee, S. O'Brien, N. J. Turro, and I. P. Herman. 2007. Zeta-Potential Measurements Of Surfactant-Wrapped Individual Single-Walled Carbon Nanotubes. The Journal of Physical Chemistry C. 111: 13684-13690.

D. S. Wright, B. S. Flavel, and J. S. Quinton. 2006. Streaming Zeta Potential Measurements Of Surface-Bound Organosilane Molecular Species. 2006 International Conference on Nanoscience and Nanotechnology 2006.

A. Ellis, S. Wallace, and W. Arnold. 2007. Surface Modification And Zeta Potentials Of Carbon Nanotube Polystyrene Nanocomposites. Materials forum 2007. 110.

M. J. Rosen and J. T. Kunjappu. 2012. Surfactants And Interfacial Phenomena. John Wiley & Sons.

M. Sano, A. Kamino, J. Okamura, and S. Shinkai. 2001. Ring Closure Of Carbon Nanotubes. Science. 293: 1299-1301.

R. W. áO'Brien. 1990. Electroacoustic Studies Of Moderately Concentrated Colloidal Suspensions. Faraday Discussions of the Chemical Society. 90: 301-312.

D. Hanaor, M. Michelazzi, C. Leonelli, and C. C. Sorrell. 2012. The Effects Of Carboxylic Acids On The Aqueous Dispersion And Electrophoretic Deposition of ZrO 2. Journal of the European Ceramic Society. 32: 235-244.

J. Yu, N. Grossiord, C. E. Koning, and J. Loos. 2007. Controlling The Dispersion Of Multi-Wall Carbon Nanotubes In Aqueous Surfactant Solution. Carbon. 45: 618-623.

O. Mendoza, G. Sierra, and J. I. Tobón. 2013. Influence Of Super Plasticizer And Ca (OH) 2 On The Stability Of Functionalized Multi-Walled Carbon Nanotubes Dispersions For Cement Composites Applications. Construction and Building Materials. 47: 771-778.

S. Musso, J.-M. Tulliani, G. Ferro, and A. Tagliaferro. 2009. Influence Of Carbon Nanotubes Structure On The Mechanical Behavior Of Cement Composites. Composites Science and Technology. 69: 1985-1990.

J. Zhao, D. Shi, and J. Lian. 2009. Small Angle Light Scattering Study Of Improved Dispersion Of Carbon Nanofibers In Water By Plasma Treatment. Carbon. 47: 2329-2336.

Downloads

Published

2017-06-21

Issue

Section

Science and Engineering

How to Cite

PHYSICAL DISPERSION OF NANOCARBONS IN COMPOSITES–A REVIEW. (2017). Jurnal Teknologi, 79(5). https://doi.org/10.11113/jt.v79.7646