FUEL DETECTION SYSTEM USING OTDR WITH MULTIMODE FIBER
DOI:
https://doi.org/10.11113/jt.v79.7686Keywords:
Fiber sensors, chemical liquid sensing, optical time domain reflectometer, multipoint optical fiber sensorAbstract
This work presents an optical fiber based sensor for fuel detection and adaptionan optical time domain Reflectometer (OTDR) as an analyzer. The sensing system consists of a portion of removal clad multimode fiber (MMF) as sensing part connected  between a receive and launch fiber. The sensing part was prepared by removing 1 cm of the MMF cladding layer using chemical etching technique. Both launch and receive fibers are using single mode fiber (SMF) where OTDR is connected to the Launch Fibre while Receive Fiber has one end with air interface.The sensor response is based on optical return loss recorded from OTDR trace when sensing part in contact with fuel where in this work diesel and benzene were tested. OTDR measurement revealed that the return loss recorded from OTDR increases when etching time of the MMF increases. The highest return loss of 2.462 dB and 3.099 dB were recorded in diesel and benzene respectively with etching time of 20 minutes. The etching time was up to 25 minutes but it was found to cause the fiber core become too thin and at the end the fiber core can completely dissolve. Further enhancement of detection sensitivity was achieved by using two-point MMF sensing system.
References
Lee, B. 2003. Review Of The Present Status Of Optical Fiber Sensors. Optical Fiber Technology. 9 (2): 57-79.
Webb, D. J. 2002. Optical-Fiber Sensors: An Overview. MRS Bulletin. 27(5): 365-369.
Wang, C., Shang, Y., Liu, X.-H., Wang, C., Yu, H.-H., Jiang, D.-S., and Peng, G.-D. 2015. Distributed OTDR-interferometric Sensing Network With Identical Ultra-Weak Fiber Bragg Gratings. Opt. Express. 23(22): 29038-29046.
Binu, S., Pillai, V. P. M., and Chandrasekaran, N. 2006. OTDR Based Fiber Optic Microbend Sensor for Distributed Sensing Applications in Structural Pressure Monitoring. J Opt. 35(1): 36-44.
Zhao, C., Ye, L., Yu, X., and Ge, J. 2012. Continuous Fuel Level Sensor Based On Spiral Side-Emitting Optical Fiber. J. Control Sci. Eng. 4(2): 21-27.
Buerck, J., Roth, S., Kraemer, K., and Mathieu, H. 2003. OTDR Fiber-Optical Chemical Sensor System For Detection And Location Of Hydrocarbon Leakage. Journal of Hazardous Materials. 102(1):13-28.
Black, P. 1992. A Review of Pipeline Leak Detection Technology. Springer Netherlands.
Bravo, M., Fernandez Vallejo, M., and Lopez-Amo, M. 2012. Hybrid OTDR-Fiber Laser System for Remote Sensor Multiplexing. Sensors Journal. 2(4): 174-183
Martins-Filho, J. F., and Fontana, E. 2009. Optical Fibre Sensor System For Multipoint Corrosion Detection. INTECH Open Access Publisher.
Agbakwuru, J. 2011. Pipeline Potential Leak Detection Technologies: Assessment and Perspective in the Nigeria Niger Delta Region. Journal of Environmental Protection. 2(8): 1055-1062.
Yu, C. H., C. Zhang and Z. X. Zhang. 2012. An Airplane Fuel Measurement System by Using Optic Fiber Sensors. Advanced Materials Research. Trans Tech Publ. 1306-1309.
Nascimento, J. F., Silva Marcionilo, J., Coêlho Isnaldo, J. S., Cipriano, E., and Martins, F. 2012. Amplified OTDR Systems For Multipoint Corrosion Monitoring. Sensors. 12(3): 3438-3448.
Banerjee, A., Mukherjee, S., Verma, R. K., Jana, B., Khan, T. K., Chakroborty, M., Das, R., Biswas, S., Saxena, A., Singh, V., Hallen, R. M., Rajput, R. S., Tewari, P., Kumar, S., Saxena, V., Ghosh, A. K., John, J., and Gupta-Bhaya, P. 2007. Fiber Optic Sensing Of Liquid Refractive Index. Sensors and Actuators B: Chemical. 123(2): 594-605
Ulrich, R. 1980. Fiber-optic Rotation Sensing With Low Drift. Optics Letters. 5(5): 173-175.
Yoo, W. J., Sim, H. I., Shin, S. H., Jang, K. W., Cho, S., Moon, J. H., and Lee, B. 2014. A Fiber-Optic Sensor Using an Aqueous Solution of Sodium Chloride to Measure Temperature and Water Level Simultaneously. Sensors. 14(10): 18823-18836.
Webster, J. G., and Eren, H. 2014. Measurement, Instrumentation, and Sensors Handbook. Spatial, Mechanical, Thermal, and Radiation Measurement. New York: CRC press.
Kim, H., Sampath, U., and Song, M. 2015. Multi-Stress Monitoring System with Fiber-Optic Mandrels and Fiber Bragg Grating Sensors in a Sagnac Loop. Sensors. 15(8): 18579-18586.
Li, T., Tan, Y., Liu, Y., Qu, Y., Liu, M., and Zhou, Z. 2015. A Fiber Bragg Grating Sensing Based Triaxial Vibration Sensor. Sensors. 9 (2): 24214-24229.
Minkovich, V. P., Monzón-Hernández, D., Villatoro, J., and Badenes, G. 2006. Microstructured Optical Fiber Coated With Thin Films For Gas And Chemical Sensing. Opt. Express. 18(6): 8413-8418.
Ming-Hung, C., Chih-Hsien, S., and Ming-Hsin, C. 2007. Optimum Sensitivity Of Single-Mode D-Type Optical Fiber Sensor In The Intensity Measurement. Sensors and Actuators B: Chemical. 123(2): 1120-1124.
Chien-Hsing, C., Yeh, B.-K., Tang, J.-L., and Wu, W.-T. 2013. Fabrication Quality Analysis of a Fiber Optic Refractive Index Sensor Created by CO2 Laser Machining. Sensors. 13(4): 4067-4087.
Yun, C.-Y., Dhital, D., Lee, J.-R., Park, G., and Kwon, I.-B. 2012. Design Of Multiplexed Fiber Optic Chemical Sensing System Using Clad-Removable Optical Fibers. Optics & Laser Technology. 44(1): 269-280.
Nascimento, J. F., Silva, M. J., Coêlho, I. J., Cipriano, E., and Martins-Filho, J. F. 2012. Amplified OTDR Systems For Multipoint Corrosion Monitoring. Sensors. 12(3): 3438-3448.
Boerkamp, M., Lamb, D. W., and Lye, P. G. 2011. Investigating Surface Crystal Growth Using An Intrinsic Exposed Core Optical Fibre Sensor. Sensors and Actuators B: Chemical. 157(2): 581-585.
Lyons, W. B., Ewald, H., Flanagan, C., and Lewis, E. 2003. A Multi-Point Optical Fibre Sensor For Condition Monitoring In Process Water Systems Based On Pattern Recognition. Measurement. 34 (4): 301-312.
Barnoski, M. K., Rourke, M. D., Jensen, S. M., and Melville, R. T. 1977. Optical Time Domain Reflectometer. Applied Optics. 16(9): 2375-2379.
Zhang, M., Wang, S., Zheng, Y., Yang, Y., Sa, X., and Zhang, L. 2015. Enhancement for Φ-OTDR Performance By Using Narrow Linewidth Light Source And Signal Processing. Photonic Sens. 6(1): 58-62
Dong, X., Wang, A., Zhang, J., Han, H., Zhao, T., Liu, X., and Wang, Y. 2015. Combined Attenuation and High-Resolution Fault Measurements Using Chaos-OTDR. Photonics Journal, IEEE. 7(6): 1-6.
Buerck, J., S. Roth, K. Kramer and H. Mathieu. 2001. Study on Preparing. OTDR Distributed Sensing Of Liquid Hydrocarbons Using Polymer-Clad Optical Fibers'. Symp. and Workshop on Time Domain Reflectometry for Innovative Geotechnical Applications: (2001). Academic, Evanston, Il. 496-509.
Yeh, C.-H., Chow, C.-W., Sung, J.-Y., Wu, P.-C., Whang, W.-T., and Tseng, F.-G. 2012. Measurement of Organic Chemical Refractive Indexes Using an Optical Time-Domain Reflectometer. Sensors.12(1): 481-488.
Brinkmeyer, E. 1980. Analysis Of The Backscattering Method For Single-Mode Optical Fibers. J. Opt. Soc. Am. 70(8): 1010-1012.
Personick, S. 1977. Photon Probe—An Opticalâ€Fiber Timeâ€Domain Reflectometer. Bell System Technical Journal. 56(3): 355-366.
Yuan, J., Zhao, C., Ye, M., Kang, J., Zhang, Z., and Jin, S. 2014. A Fresnel Reflection-Based Optical Fiber Sensor System For Remote Refractive Index Measurement Using An OTDR. Photonic Sens. 4(1): 48-52.
Sumida, S., Okazaki, S., Asakura, S., Nakagawa, H., Murayama, H., and Hasegawa, T. 2005. Distributed Hydrogen Determination With Fiber-Optic Sensor. Sensors and Actuators B: Chemical. 108(1): 508-514.
Chester, A. N., Martellucci, S., and Scheggi, A. V. 2012. Optical Fiber Sensors. Springer Science & Business Media.
Soto, M. A., Sahu, P. K., Faralli, S., Sacchi, G., Bolognini, G., Di Pasquale, F., and Rueck, C. 2007. High Performance And Highly Reliable Raman-Based Distributed Temperature Sensors Based On Correlation-coded OTDR And Multimode Graded-Index Fibers. Optics and Photonics. 3(2): 66193-66197.
Palmieri, L., & Schenato, L. 2013. Distributed Optical Fiber Sensing Based On Rayleigh Scattering. The Open Optics Journal. 7(1): 104-127.
Rai, V. K. 2007. Temperature Sensors And Optical Sensors. Applied Physics B. 88(2): 297-303.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.