Straight Line and Circular Arc Methods for Developing G1 and G2 Involute Curves
DOI:
https://doi.org/10.11113/jt.v43.771Abstract
Lengkung polinomial berparameter seperti Bezier, Ball, splin–B dan Splin–B tak seragam digunakan dalam mereka bentuk lengkung bebas. Dalam kajian ini, kami telah mengkategori lengkung di atas sebagai lengkung konvensional. Fleksibiliti lengkung–lengkung tersebut membolehkannya diguna dalam mereka bentuk lengkung secara interakhf. Namun demikian, lengkung konvensional ini tidak boleh diguna untuk mereka bentuk lebuh raya, landasan keretapi dan trajektori robot kerana kelengkungan bertanda bagi lengkung–lengkung tersebut sukar dikawal. Oleh yang demikian, pereka bentuk harus menerapkan proses saksama yang memakan masa. Terdapat juga lengkung tak konvensional yang mudah dikawal dari segi kelengkungan, misalnya lingkaran Euler dan sama sudut equiangular. Walau bagaimanapun, mereka bentuk lengkung tak konvensional melibatkan kamiran Fresnal dan fungsi eksponen masing–masingnya yang mengakibatkan overhed dan implementasi. Kajian ini memperkenalkan dua jenis lengkung yang dijana melalui proses evolut–involut. Lengkung involut jenis pertama dijana menggunakan garis lurus selaku evolut dan dinamakan IFSL. Lengkung involut jenis kedua dijana berdasarkan segmen bulatan dan garis lurus, dan dinamakan IFCA. Kata kunci: Reka Bentuk Geometri Dibantu Komputer (RGBK), lengkung involut, keselanjaran geometri berdarjah 1 (G1) dan 2 (G2), segmen bulatan, lingkaran Parametric polynomial curves such as Bezier, Ball, B–splines, Non–uniform B–splines (NURBS) are used for free form curve design. In this paper, we classify these curves as conventional curves. The flexibility of these curves deems suitable for use in the interactive design of curves. On the contrary, these curves cannot be used for highways, railways and robot trajectory designs as the signed curvature of these curves are difficult to control. As a result, the designer has to integrate a time consuming fair process. There are unconventional curves with easy control of the curvature namely, Euler and equiangular spirals. Unfortunately, the formulation of these spirals involves Fresnal integral and exponential functions respectively, which results in extra overhead and implementation. This paper introduces two type of curves which are generated from an evolute–involute process. The first type of involute curve(s) is generated using straight line(s) as the evolute(s) and named IFSL. The second type of involute curve(s) is generated based on circular arc(s) and a straight line and named IFCA. Key words: Computer Aided Geometric Design (CAGD), involute curves, geometric continuity of degree 1 (G1) and 2 (G2), circular arcs, spiralsDownloads
Published
2012-02-29
Issue
Section
Science and Engineering
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.
How to Cite
Straight Line and Circular Arc Methods for Developing G1 and G2 Involute Curves. (2012). Jurnal Teknologi (Sciences & Engineering), 43(1), 55–66. https://doi.org/10.11113/jt.v43.771