Generation of Fuzzy Rules with Subtractive Clustering

Authors

  • Agus Priyono
  • Muhammad Ridwan
  • Ahmad Jais Alias
  • Riza Atiq O. K. Rahmat
  • Azmi Hassan
  • Mohd. Alauddin Mohd. Ali

DOI:

https://doi.org/10.11113/jt.v43.782

Abstract

Pembelajaran sistem pangkalan peraturan kabur menggunakan algoritma genetik mempunyai masa depan yang cerah bagi menyelesaikan beberapa masalah. Lojik kabur menawarkan cara sederhana bagi menyimpulkan maklumat input yang kasar, kabur, cacat atau tidak jelas. Model lojik kabur adalah berasaskan kaedah–kaedah empirik bergantung kepada pengalaman operator berbanding dengan pengetahuan teknikal daripada sistem. Dalam metod lojik kabur, sebarang input yang munasabah dapat diproses dan sebilangan output dapat dijana meskipun penakrifan pangkalan peraturan secara cepat dapat menjadi rumit sekiranya terlalu banyak input dan output yang dipilih untuk sebuah penggunaan. Bergantung kepada sistem, semakin rumit input dan output yang ingin diselesaikan oleh sistem, maka akan semakin banyak jumlah bilangan peraturan dan kerumitan tetapi juga akan menambah mutu kawalan dari sistem. Banyak kaedah telah dicadangkan bagi menjana peraturan kabur. Idea asas daripada penyelidikan ini adalah untuk mempelajari serta menjana peraturan paling optimum yang diperlukan bagi mengawal input tanpa mengurangi mutu kawalan. Kertas kerja ini yang mencadangkan penjanaan peraturan kabur menggunakan penggugusan subtraktif pada lojik kabur Takasi–Sugeno–Kang (TSK) bagi kegunaan kawalan lampu isyarat lalu lintas. Kata kunci: Lojik kabur TSK, sistem pangkalan peraturan kabur, teknik penggugusan subtraktif Learning fuzzy rule–based systems with genetic algorithms can lead to very useful descriptions of several problems. Fuzzy logic (FL) provides a simple way to arrive at a definite conclusion based upon vague, ambiguous, imprecise, noisy or missing input information. The FL model is empirically based, relying on an operator’s experience rather than their technical understanding of the system. In the FL method, any reasonable number of inputs can be processed and numerous outputs will be generated, although defining the rule–base quickly becomes complex if too many inputs and outputs are chosen for a single implementation since rules defining their interrelations must also be defined. This will increase the number of fuzzy rules and complexity but may also increase the quality of the control. Many methods were proposed to generate fuzzy rules–base. The basic idea is to study and generate the optimum rules needed to control the input without compromising the quality of control. The paper proposed the generation of fuzzy rule base by subtractive clustering technique in Takagi–Sugeno–Kang (TSK) fuzzy method for traffic signal control system. Key words: TSK fuzzy logic, fuzzy rule base system, subtractive clustering technique

Downloads

Published

2012-02-29

Issue

Section

Science and Engineering

How to Cite

Generation of Fuzzy Rules with Subtractive Clustering. (2012). Jurnal Teknologi (Sciences & Engineering), 43(1), 143–153. https://doi.org/10.11113/jt.v43.782