CHARACTERIZATION OF PHOTOCHEMICALLY INITIATED GOLD NANOPARTICLES SYNTHESIZED VIA INCOHERENT ULTRAVIOLET RADIATION
DOI:
https://doi.org/10.11113/jt.v78.7837Keywords:
Spherical AuNP, photochemical initiation, localised surface plasmon resonance (LSPR), photon correlation spectroscopyAbstract
A modified Turkevich pathway of synthesizing water suspended gold nanoparticles using incoherent ultraviolet radiation as photochemical reaction initiator produced broader absorbance band corresponding to localised surface plasmonresonsnce around 530 nm with average particle size separated into two distinct distributions from 5 nm to 100 nm depending on ultraviolet wavelength. Presence and dynamics of nanoparticle growth was observed with photon correlation spectroscopy where aged colloids produced submicron sized agglomerated particles. Post-synthesis colloidal pH shows gradual degradation of particle stability. Â
References
C. S. Regiya, Jatish Kumar, V. Raji, M. Vibin, A. Annie. 2012. Selective Photothermal Efficiency Of Citrate Capped Gold Nanoparticles For Destruction Of Cancer Cells. Pharmacological Research. 65: 261-269.
J.L. Li, Min Gu. 2010. Gold-Nanoparticle-Enhanced Cancer Photothermal Therapy. IEEE Journal on Selected Topics in Quantum Electronics. 16(4): 989-996.
X. H. Huang, Prashant K. Jain. I. H. El-Sayed, M. A. El-Sayed. 2008. Plasmonic Photothermal Therapy (PPTT) Using Gold Nanoparticles. Lasers Med. Sci. 23: 217-228.
Y. P. Liu, W. Meyer-Zaika, S. Franzka, G. Schmid, M. Tsoli, H. Kuhn. 2003. Goldâ€Cluster Degradation by the Transition of Bâ€DNA into Aâ€DNA and the Formation of Nanowires Angew. Chem. Int. Ed. 42: 2853-2857.
J. H. Park, G. Maltzahn, L. L. Ong, A. Centrone. T. A. Hatton, E. Ruoslahti, S. N. Bhatia, M. J. Sailor. 2010. Cooperative Nanoparticles for Tumor Detection and Photothermally Triggered Drug Delivery. Adv. Mater. 22: 880-885.
A. G. Tkachenko, H. Xie, Y. L. Liu, D. Coleman, J. Ryan, W. R. Glomm, M. K. Shipton, S. Franzen, D. L. Feldheim. 2004. Cellular Trajectories of Peptide-modified Gold Particle Complexes: Comparison of Nuclear Localization Signals and Peptide Transduction Domains. Bioconjugate Chem. 15: 482-490.
M. Thomas, A. M. Klibanov. 2003, Conjugation to Gold Nanoparticles Enhances Polyethylenimine's Transfer of Plasmid DNA into Mammalian Cells. Proc. Nat. Aca. Sci. 100(16): 9138-9143.
G. Maltzahn, A. Centrone, J. H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, S. N. Bhatia. 2009. SERSâ€coded Gold Nanorods as a Multifunctional Platform for Densely Multiplexed Nearâ€infrared Imaging and Photothermal Heating. Adv. Mater. 21: 3175-3180.
H. J. Parab, H. M. Chen, T. C. Lai, J. H. Huang, P. H. Chen, R. S. Liu, M. Hsiao, C. H. Chen, D. P. Tsai, Y. K. Hwu. 2009. Biosensing, Cytotoxicity, and Cellular Uptake Studies of Surface-modified Gold Nanorods. J. Phys. Chem. C. 113(18): 1574-1578.
C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, S. C. Baxter. 2008. Gold Nanoparticles in Biology: Beyond Toxicity to Cellular Imaging. Acc. Chem. Research. 41(12): 1721-1730.
J. E. Park, M. Atobe, F. Fuchigami. 2006. Sonochemical Synthesis of Conducting Polymer–metal Nanoparticles Nanocomposite. Ultrason. Sonochem. 13: 237-241.
K. Okitsu, M. Ashokkumar, F. Grieser. 2005. Sonochemical Synthesis of Gold Nanoparticles: Effects of Ultrasound Frequency. J. Phys. Chem. B., 109: 20673-20675.
S. Kundu, K. Wang, H. Liang. 2009. Size-controlled Synthesis and Self-assembly of Silver Nanoparticles within a Minute using Microwave Irradiation. J. Phys. Chem. C. 113(13): 5157-5163.
J. Gu, W. Fan, A. Shimojima, T. Okubo. 2008. Microwave-Induced Synthesis of Highly Dispersed Gold Nanoparticles Within the Pore Channels of Mesoporous Silica. J. Solid State Chem. 181(4): 957-963.
F. Liua, Y. Chang, F. Koa, T. Chu. 2004. Microwave rapid Heating for The Synthesis of Gold Nanorods. Mater. Lett. 58(3): 373-377.
S. Yang, T. Zhang, L. Zhang, S. Wang, Z. Yang, B. Ding. 2007. Continuous Synthesis of Gold Nanoparticles and Nanoplates with Controlled Size and Shape Under UV Irradiation. Colloids Surf. A. 296: 37-44.
M. Meyre, M. Treguer-Delapierre, C. Faure. 2008. Radiation-induced Synthesis of Gold Nanoparticles within Lamellar Phases. Formation of Aligned Colloidal Gold by Radiolysis. Langmuir. 24(9): 4421-4425.
T. K. Sau, A. Pal, N. R. Jana, Z. L. Wang, T. Pal. 2001. Seed-mediated Successive Growth of Gold Particles Accomplished by UV Irradiation: A Photochemical Approach for Size-controlled Synthesis. J. Nanopart. Res. 3(4): 257-261.
J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, A. Plech, 2006. Turkevich Method for Gold Nanoparticle Synthesis Revisited. J. Phys. Chem. B 110, 15700-157707.
J. Turkevich, P. C. Stevenson, J. Hiller. 1951. A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold. Discuss. Faraday Soc. 11: 55-75.
RodrÃgez-Gonzalez, B. Mulvaney, P. Liz-Marzán, L. M. Z. 2007. Small Gold Nanoparticles Synthesized with Sodium Citrate and Heavy water: Insights into the Reaction Mechanism. Phys. Chem. 221: 415-426.
X. Wu, P. L. Redmond, H. Liu, Y. Chen, M. Steigerwald, L. J. Brus. 2008. Photovoltage Mechanism for Room Light Conversion of Citrate Stabilized Silver Nanocrystal Seeds to Large Nanoprisms. Am. Chem. Soc.130: 9500-9506.
M. Kaushik, Z. L. Wang, P. Tarasanka, 2001. Seed-mediated Successive Growth of Gold Particles Accomplished By UV Irradiation: A Photochemical Approach For Size-controlled Synthesis. J. Photochemistry and Photobiology A: Chem, 140: 75-80.
B. Cercek, M. Ebert, A.J. Swallow. 1966. Novel Valence States of Thallium as Studied by Pulse Radiolysis. J. Chem. Soc. A. 612-615.
B. K. Pong, H. I. Elim, J. X. Chong, W. Ji, B. L. Trout, J. Y. Lee. 2007. New Insights on the Nanoparticle Growth Mechanism in The Citrate Reduction of Gold(III) salt: Formation of the Au Nanowire Intermediate and Its Nonlinear Optical Properties. J. Phys. Chem. C. 111: 6281-6287.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.