DATA ANALYTICS IN SPATIAL EPIDEMIOLOGY: A SURVEY

Authors

  • Sharmila Banu Kather School of Computer Science & Engineering, VIT University, Vellore Campus, Vellore 632014 India
  • BK Tripathy School of Computer Science & Engineering, VIT University, Vellore Campus, Vellore 632014 India

DOI:

https://doi.org/10.11113/jt.v78.7879

Keywords:

Spatial epidemiology, data mining, spatial auto co-relation, rough set theory, fuzzy sets, ecological fallacy, demographic shift, incomplete data

Abstract

Spatial data analysis is being used efficiently and the governments have realized that georeferenced data yields more insight with time and locations. Epidemiology is about the study of origin and distribution of diseases and dates back to the 1600s with the instance of cholera in London. Data Science has been evolving and when analyzed with Soft Computing techniques like Rough Set Theory (RST), Fuzzy Sets, Granulation Computing which encompasses the data in its original nature, results can be obtained with accrued accuracy. This survey paper highlights Spatial Data Mining methods used in the field of Epidemiology, identifies crucial challenges and discusses of the use of Soft Computing methods.

 

Author Biographies

  • Sharmila Banu Kather, School of Computer Science & Engineering, VIT University, Vellore Campus, Vellore 632014 India

    Asst. Professor (Senior)
    School of Computer Science & Engineering

  • BK Tripathy, School of Computer Science & Engineering, VIT University, Vellore Campus, Vellore 632014 India

    Senior Professor
    School of Computer Science & Engineering

References

Shekar, S and S. Chawla. 2003. Spatial Databases: A Tour. Prentice Hall. 267: 271.

Shashi, S., M. Evans, J. Kang. 2014. Technical Report on Spatial Data Mining. Department of Computer Science, University of Minnesota

Deren, L and S.Wang. 2005. Concepts, Principles And Applications Of Spatial Data Mining And Knowledge Discovery. Proceedings of International Conference on Spatio-temporal Computing conducted by International Society for Photogrammetry and Remote sensing.

Luc A. 1994. Exploratory Spatial Data Analysis and Geographic Information Systems. New Tools for Spatial Analysis. 45: 54.

Boriah, S., V. Mithal, A. Garg, V. Kumar, M Steinbach, C. Potter & S. A. Klooster. 2010. A Comparative Study Of Algorithms For Land Cover Change. CIDU. 175-188.

Murgante B., G. Las Casas, A. Sansone. 2007. A Spatial Rough Set For Locating The Periurban Fringe. SAGEO.

Chi, G., and J. Zhu. 2008. Spatial Regression Models For Demographic Models. Population Res. Policy Review. 27(1): 17-42.

Pawlak, Z. 1982. Rough Sets. International Journal of Man-Machine Studies. 21: 127-134.

Zadeh, L. A. 1965. Fuzzy Sets. Information and Control. 8: 338-353.

Bai, H., Y. Ge, J. Wang and Y.L. Liao. 2010. Using Rough Set Theory To Identify Villages Affected By Birth Defects: The Example Of Heshun, Shanxi, China. International Journal of Geographical Information Science. 24(4): 559-576.

Bai, H. and Y. Ge. 2014. A Method For Extracting Spatial Rules From Spatial Data Based On Rough Fuzzy Sets. Knowledge-based Systems. 57: 28-50.

Boulos, M. N. K. 2004. Towards Evidence-Based, GIS Driven National Spatial Health Information Infrastructure And Surveillance Services In The United Kingdom. International Journal of Health Geographics. 3(1): 1.

Stocks, P. 1936. Distribution Of Cancer In England And Wales At Various Sites. British Empire Cancer Campaign. 12: 239-280.

Walter, S. D. and S. E. Birnie. 1991. Mapping Mortality And Morbidity Patterns: An International Comparison. International Journal Of Epidemiology. 20(3): 678-689.

Miller, H. J. 2004. Tobler’s First Law And Spatial Analysis. Annual Association – America. 94(2): 284-289.

Jensen, R and R. Shen. 2004. Semantics-Preserving Dimensionality Reduction: Rough And Fuzzy-Rough Based Approaches. IEEE transactions on Knowledge and Data Engineering. 16(12): 1457-1471.

Richards, T. B., C. M. Croner, G. Rushton, C. K. Brown, L. Fowler. 1999. Geographic Information Systems And Public Health: Mapping The Future. Public Health Report. 114(4): 359-73.

Rushton, G. 1998. Improving The Geographic Basis Of Health Surveillance Using GIS. In Gatrell, A. and Loytonen M. (ed.). GIS and Health. Philadelphia: Taylor and Francis. 63-80.

Gavin, E. 2002. Geo-Information Supports Decision-Making in Africa – An EIS-AFRICA Position Paper, [http:// www.eis-africa.org/DOCS/A5-Engv7.pdf] Pretoria, South Africa: EISAFRICA].

Dunn, C.E., J. Woodhouse, R.S. Bhopal, S.D. Acquilla. 1995. Asthma And Factory Emissions In Northern England: Addressing Public Concern By Combining Geographical And Epidemiological Methods. Journal of Epidemiological Community Health. 49(4): 395-400.

Field, K., L. Beale, H. Heatlie, M. Frischer. 2001. Using a Geographic Information System to forecast the diffusion of drug misuse. Proceedings of the 21st Annual ESRI International User Conference: 9–13 July 2001. San Diego, California [http://gis.esri.com/library/userconf/ proc01/professional/papers/pap331/p331.htm].

Higgs, G. and M. Gould. 2001. Is There A Role For GIS In The 'New NHS'? Health Place. 7(3): 247-59.

Lai, P.C., F.M. So, K.W. Chan. 2009. Spatial Epidemiological Approaches in Disease Mapping and Analysis. CRC Press: New York, USA. 2.

Deconinck, E., T. Hancock, D. Coomans, D.L. Massart, Y.V. Heyden. 2005. Classification Of Drugs In Absorption Classes Using Classification And Regression Trees Methodology. Journal of Pharma and Biomedical Anal. 39 (1-2): 91-103.

Deconinck, E., Q.S. Xu, R. Put, D. Coomans, D.L. Massart, Y.V. Heyden. 2005. Prediction Of Gastro-Intestinal Absorption Using Multi-Variate Adaptive Regression Splines. Journal of Pharma and Biomedical Anal. 39(5): 1021-1030.

Miyaki, K., I. Takei, K. Watanabe, H. Nakashima, K. Omae. 2002. Novel Statistical Classification Model Of Type 2 Diabetes Mellitus Patients For Tailor Made Prevention Using Data Mining Algorithm. Journal of Epidemiology. 12(3): 243-248.

York, T. P., and L. J. Eaves. 2001. Common Disease Analysis Using Multivariate Adaptive Regression Splines. Genet Epidemiology. 21(1): 649-654

Øhrn, A. 1999. Discernibility And Rough Sets In Medicine: Tools And Applications. Thesis (PhD), Norwegian University of Science & Technology.

Meng, B., J. Wang, J. Liu, J. Wu and E. Zhong. 2005. Understanding The Spatial Diffusion Process Of Severe Acute Respiratory Syndrome In Beijing. Public Health. 119(12): 1080-1087.

Wang, J. F. 2006. Spatial Dynamics Of An Epidemic Of Severe Acute Respiratory Syndrome In An Urban Area. Bulletin of World Health Organization, 2006. 84(12): 965-968.

Ulugtekin, N., S. Alkoy, and D. Z. Seker. 2007. Use Of A Geographic Information System In An Epidemiological Study Of Measles In Istanbul. Journal Of International Medical Research. 35(1): 150-154.

Slowiński, K., R. Slnowiński and J. Stefanowski. 1988. Rough Sets Approach To Analysis Of Data From Peritoneal Lavage In Acute Pancreatitis. Medical Informatics.13(3): 143-159.

Ohrn, A., L. Ohno-Machado and T. Rowland. 1998. Building manageable rough set classifiers. In Proceedings of the AMIA Symposium. American Medical Informatics Association. 543.

Vinterbo, S. and A. Øhrn. 2000. Minimal Approximate Hitting Sets and Rule Templates. International Journal of Approximate Reasoning. 25(2): 123-143.

Buscema, M., E. Grossi, A. Bronstein, W. Lodwick, M. Asadi-Zeydabadi, R. Benzi and F. Newman. 2013. A New Algorithm For Identifying Possible Epidemic Sources With Application To The German Escherichia Coli Outbreak. ISPRS International Journal of Geo-Information. 2(1): 155-200.

Shi, W. 2005. Principle Of Modeling Uncertainties In Spatial Data And Analysis. Science. Beijing.

Dubois, D. and H. Prade. 1990. Rough Fuzzy Sets And Fuzzy Rough Sets. International Journal of General Systems. 17(2): 191-209.

Wright Willis, A., Evanoff, B. A., Lian, M., Criswell, S. R. and Racette, B. A. 2010. Geographic And Ethnic Variation In Parkinson Disease: A Population-Based Study Of US Medicare Beneficiaries. Neuroepidemiology. 34(3): 143-151.

Kugeler, K. J., G. M. Farley, J. D. Forrester and P. S. Mead. 2015. Geographic Distribution And Expansion Of Human Lyme Disease, United States. Emerging Infectious Diseases. 21: 1455-1457.

European Centre for Disease Prevention And Control. 2015. Geographic Distribution Of Areas With A High Prevalence Of HTLV-1 Infection. Stockholm: ECDC.

Song, C. and M. Kuldorf. Power Evaluation Of Disease Clustering Tests. 2003. International Journal of Health Geographics. 2: 9.

Dunn, C. E., J. Woodhouse, R. S. Bhopal and S. D. Acquilla. 1995. Asthma And Factory Emissions In Northern England: Addressing Public Concern By Combining Geographical And Epidemiological Methods. Journal of Epidemiology and Community Health. 49(4): 395-400.

Briggs, D. J. 2000. Environmental Health Hazard Mapping For Africa (p.140). Harare, Zimbabwe: WHO-AFRO.

Oleg, M. 1995. The Integration Of GIS, Remote Sensing, Expert Systems And Adaptive Co-Kriging For Environment Habitat Modeling Of Highland Haggis Using Object Oriented, Fuzzy Logic And Neural Network Techniques. Computers and Geosciences. 22(5): 585-588.

Jeff, B. and C.V. Deutsch. 2010. Programs For Kriging And Gaussian Simulation With Locally Varying Anisotropy Using Non-Euclidean Distances. Computers and Geosciences. 7(2011): 495-510

Pierre, G. 2006. Geostatistical Analysis Of Disease Data: Accounting For Spatial Support And Population Density In The Isopleth Mapping Of Cancer Mortality Risk Using Area-To-Point Poisson Kriging. International Journal of Health Geographics. 5: 52

Kristina, W. W., E. Symanski, D. Lai and A.L. Coker. 2011. Kriged And Modeled Ambient Air Levels Of Benzene In An Urban Environment: An Exposure Assessment Study. International Journal of Health Geographics. 10: 21.

Mohammad, A., P. Goovaerts, N. Nazia, M. Z. Haq, M. Yunus and M. Emch. 2006. Application Of Poisson Kriging To The Mapping Of Cholera And Dysentery Incidence In An Endemic Area Of Bangladesh. International Journal of Health Geographics. 5: 45

Benjamin, G. J, N. D. Burkett-Cadena, J. C. Luvall, S. H. Parcak, C. J. W. McClure, L. K. Estep, G. E. Hill, E. W. Cupp, R. J. Novak and T. R. Unnasch. 2010. Developing GIS-based Eastern Equine Encephalitis Vector-Host Models In Tuskegee, Alabama. International Journal of Health Geographics. 9: 12.

Ta-Chien, C., M. Chen, I. Lin, C. Lee, P. Chiang, D. Wang and J. Chuang. 2009. Spatiotemporal Analysis Of Air Pollution And Asthma Patient Visits In Taipei, Taiwan. International Journal of Health Geographics. 8: 26

Luis, R. B. 2004. Spatial Access To Health care in Costa Rica And Its Equity: A GIS-Based Study. Social Science & Medicine. 58(2004): 1271-1284.

Jiaxi, Z., W. Wang, Z. Tan, Q. Wu, W. Xiao, L. Shang, Y. Zhang, J. Peng and D. Miao. 2014. Spatial Analysis Of Schizotypal Personality Traits In Chinese Male Youths: Evidence From A GIS-Based Analysis Of Sichuan. International Journal of Mental Health Systems. 8: 3.

Sviatlana, P., S. E. HÃ¥berg, G.Aamodt, S. J. London, H. Stigum, W. Nystad and P. Nafstad. 2016. Association Between Pregnancy Exposure To Air Pollution And Birth Weight In Selected Areas Of Norway. Archives of Public Health. 74: 26.

Galati, A. and M. N. Avraamides. 2012. Collaborating In Spatial Tasks: Partners Adapt The Perspective Of Their Descriptions, Coordination Strategies, And Memory Representations. In C. Stachniss, K. Schill, & D. Uttal (Eds.). Spatial Cognition. Lecture Notes In Artificial Intelligence. Heidelberg, Germany: Springer. 7463: 182-195.

Badel, M., S. Angorani, and M. S. Panahi. 2011. The Application Of Median Indicator Kriging And Neural Network In Modeling Mixed Population In An Iron Ore Deposit. Computers and Geosciences. 37: 530-540.

Downloads

Published

2016-09-29

Issue

Section

Science and Engineering

How to Cite

DATA ANALYTICS IN SPATIAL EPIDEMIOLOGY: A SURVEY. (2016). Jurnal Teknologi (Sciences & Engineering), 78(10). https://doi.org/10.11113/jt.v78.7879