• Amolkumar Narayan Jadhav Vel-Tech Dr. RR & Dr. SR Technical University, Chennai, India
  • Gomathi N. Vel-Tech Dr. RR & Dr. SR Technical University, Chennai, India



Clustering, data partitioning, kernel, grey wolf optimizer (GWO), optimization, centroid estimation, f-measure


Clustering finds variety of application in a wide range of disciplines because it is mostly helpful for grouping of similar data objects together. Due to the wide applicability, different algorithms have been presented in the literature for segmenting large multidimensional data into discernible representative clusters. Accordingly, in this paper, Kernel-based exponential grey wolf optimizer (KEGWO) is developed for rapid centroid estimation in data clustering. Here, KEGWO is newly proposed to search the cluster centroids with a new objective evaluation which considered two parameters called logarithmic kernel function and distance difference between two top clusters. Based on the new objective function and the modified KEGWO algorithm, centroids are encoded as position vectors and the optimal location is found for the final clustering. The proposed KEGWO algorithm is evaluated with banknote authentication Data Set, iris dataset and wine dataset using four metrics such as, Mean Square Error, F-measure, Rand co-efficient and jaccord coefficient. From the outcome, we proved that the proposed KEGWO algorithm outperformed the existing algorithms.   


Huang, X., Ye,Y. and Zhang, H. 2014. Extensions of Kmeans-Type Algorithms: A New Clustering Framework by Integrating Intracluster Compactness and Intercluster Separation. IEEE Transactions On Neural Networks And Learning Systems. 25(8): 1433-1446.

Binu, D. 2015. Cluster Analysis Using Optimization Algorithms With Newly Designed Objective Functions. Expert Systems with Applications. 42(14): 5848-5859.

Sheng, W., Chen, S., Fairhurst, M., Xiao, G. and Mao, J. 2014. Multilocal Search and Adaptive Niching Based Memetic Algorithm with a Consensus Criterion for Data Clustering. IEEE Transactions On Evolutionary Computation. 18(5): 721-741.

Tvrdík, J. and Krivy, I. 2015. Hybrid Differential Evolution Algorithm For Optimal Clustering. Applied Soft Computing. 35: 502-512.

Kuo, R. J., Huang, Y. D., Lin, C. C., Wu, Y. H. and Zulvia, F. E. 2014. Automatic Kernel Clustering with Bee Colony Optimization Algorithm. Information Sciences. 283: 107-122.

Yuwono, M., Su, S. W., Moulton, B. D. and Nguyen, H. T. 2014. Data Clustering Using Variants of Rapid Centroid Estimation, IEEE Transactions On Evolutionary Computation. 18(3): 366-377.

Parker, J. K. and Hall, L. O. 2014. Accelerating Fuzzy-C Means Using an Estimated Subsample Size. IEEE Transactions On Fuzzy Systems. 22(5): 1229-12445.

Filho, T. M. S., Pimentel, B. A., Souza, R. M. C. R. and Oliveira, A. L. I. 2015. Hybrid Methods For Fuzzy Clustering Based On Fuzzy C-Means And Improved Particle Swarm Optimization. Expert Systems with Applications. 42(17-18): 6315-6328.

Xu, R., Wunsch, D. I. 2005. Survey Of Clustering Algorithms. IEEE Transactions on Neural Networks. 16(3): 645-678.

Pal, N., Pal, K., Keller, J. and Bezdek, J. 2005. A Possibilistic Fuzzy C-Means Clustering Algorithm. IEEE Transactions on Fuzzy Systems. 13(4): 517-530.

Jain, A. K. 2010. Data Clustering: 50 Years Beyondk-Means. Pattern Recognit. Lett. 31(8): 651-666.

Mualik, U. and Bandyopadhyay, S. 2002. Genetic Algorithm Based Clustering Technique. Pattern Recognition. 33: 1455-1465.

Premalatha, K. and Natarajan, A. M. 2008. A New Approach For Data Clustering Based On PSO With Local Search. Computer and Information Science. 1(4).

Zhang, C., Ouyang, D. and Ning, J. 2010. An Artificial Bee Colony Approach For Clustering. Expert Systems with Applications. 37: 4761-4767.

Wan, M., Li, L., Xiao, J., Wang, C. and Yang, Y. 2012. Data Clustering Using Bacterial Foraging Optimization. Journal of Intelligent Information Systems. 38(2): 321-341.

Das, S., Abraham, A. and Konar, A. 2008. Automatic Clustering Using An Improved Differential Evolution Algorithm. IEEE Transactions on Systems, Man, and Cybernetics – Part A: Systems and Humans. 38(1): 218-237.

Castellanos-Garzón, J. A. and Diaz, F. 2013. An Evolutionary Computational Model Applied To Cluster Analysis Of DNA Microarray Data. Expert Systems with Applications. 40(7): 2575-2591.

Senthilnath, J., Omkar, S. N. and Mani, V. 2011. Clustering Using Firefly Algorithm: Performance Stud. Swarm and Evolutionary Computation. 1: 164-171.

Kuo, R. J., Syu, Y. J., Chen, Z. Y. and Tien, F. C. 2012. Integration Of Particle Swarm Optimization And Genetic Algorithm For Dynamic Clustering. Journal of Information Sciences. 19: 124-140.

Selim, S. Z. and Alsultan, K. 1991. A Simulated Annealing Algorithm For The Clustering Problem. Pattern Recognition. 10(24): 1003-1008.

Berkhin, P. 2002. Survey of Clustering Data Mining Techniques. Grouping Multidimensional Data, Springer-Verlag. 25-71.

Yasodha, M., and Mohanraj, M. 2011. Clustering Algorithms for Biological Data - A Survey Approach. CiiT Journal Of Data Mining And Knowledge Engineering. 3(3).

Datasets from

Mirjalili, S., Mirjalili, S. M. and Lewis, A. 2014. Grey Wolf Optimizer. Advances in Engineering Software. 69: 46-61.

Chen, H., Zhang, Y. and Gutman, I. 2016. A Kernel-Based Clustering Method For Gene Selection With Gene Expression Data. Journal of Biomedical Informatics. 62: 12-20.

Ding, Y. and Xian F. 2016. Kernel-Based Fuzzy C-Means Clustering Algorithm Based On Genetic Algorithm. Neurocomputing. 188: 233-238.

Ferreira, M. R. P., Carvalho, F. A. T. and Simões, E. C. 2016. Kernel-based Hard Clustering Methods With Kernelization Of The Metric And Automatic Weighting Of The Variables. Pattern Recognition. 51: 310-321.

Nguyen, D. D., Ngo, L. T., Pham, L. T. and Pedrycz, W. 2015. Towards Hybrid Clustering Approach To Data Classification: Multiple Kernels Based Interval-Valued Fuzzy C-Means Algorithms. Fuzzy Sets and Systems. 279: 17-39.






Science and Engineering

How to Cite