DESIGNING DISULFIDE CYCLIC PEPTIDE AS FUSION INHIBITOR THAT TARGETS DENV ENVELOPE PROTEIN

Authors

  • Usman Sumo Friend Tambunan Bioinformatics Research Group, Department of Chemistry, Faculty of Mathematics and Science, Universitas Indonesia, Depok 16424, Indonesia
  • William Chua Bioinformatics Research Group, Department of Chemistry, Faculty of Mathematics and Science, Universitas Indonesia, Depok 16424, Indonesia
  • Arli Aditya Parikesit Bioinformatics Research Group, Department of Chemistry, Faculty of Mathematics and Science, Universitas Indonesia, Depok 16424, Indonesia
  • Djati Kerami Mathematics Computation Group, Department of Mathematics, Faculty of Mathematics and Science, Universitas Indonesia, Depok 16424, Indonesia

DOI:

https://doi.org/10.11113/jt.v78.8259

Keywords:

Dengue, disulfide cyclic peptide, molecular docking, molecular dynamics, fusion inhibitor

Abstract

Dengue has been a major health concern and currently there is no available option to treat the infection. It is an arboviral disease caused by dengue virus (DENV), an enveloped flavivirus. DENV initiates fusion process between viral envelope and host cell membrane, transfers its viral genome into target cell and infects host. Our research is focused on designing disulfide cyclic peptides that can fit into fusion cavity and interact with fusion peptide, interrupt conformational changes and therefore inhibit the fusion process. Computational approaches were conducted to calculate the binding affinity and stability of disulfide cyclic peptide ligands with target DENV E glycoprotein. Molecular docking and molecular dynamics simulation were performed using Molecular Operating Environment 2008.10 software (MOE 2008.10). Screening of 1320 designed ligands resulted in 3 best ligands, CLREC, CYREC and CYREC that can form interaction with target cavity and peptide fusion. These ligands showed good affinity with target DENV E glycoprotein based on free binding energy and interactions. To evaluate protein-ligand stability, we performed molecular dynamic simulation. Only CLREC showed protein-ligand stability and maintained interaction between ligand and target cavity. Therefore we propose CLREC as potential DENV fusion inhibitor candidates.  

References

Mustafa, M.S., V. Rasotgi, S. Jain and V. Gupta. 2014. Discovery of fifth serotype of dengue virus (DENV-5): A new public health dilemma in dengue control. Medical Journal Armed Forces India. 71(1): 67–70.

Whitehorn, J. and J. Farrar. 2010. Dengue. British Medical Bulletin. 95(1): 161–73.

Perera, R. and R.J. Kuhn. 2008. Structural proteomics of dengue virus. Current Opinion in Microbiology. 11(4): 369–377.

Cosset, F.-L. and D. Lavillette. 2011. Cell Entry Of Enveloped Viruses. Advances in Genetics. 73: 121–83.

Plemper, R.K. 2011. Cell Entry Of Enveloped Viruses. Current Opinion in Virology. 1(2): 92–100.

Qi, R., L. Zhang, and C. Chi. 2008. Biological Characteristics Of Dengue Virus And Potential Targets For Drug Design. Acta Biochimica et Biophysica Sinica. 40(2): 91–101.

Dubey, K. D., A.K. Chaubey And R.P. Ojha, 2011. Role Of Polarization In Ligand Docking And Binding Affinity Prediction For Inhibitors Of Dengue Virus. Medicinal Chemistry Research. 21(7): 1030–1038.

Yennamalli, R., N. Subbarao, T. Kampmann, R.P. McGeary, P.R. Young and B. Kobe. 2009. Identification of novel target sites and an inhibitor of the dengue virus E protein. Journal of Computer-Aided Molecular Design. 23(6): 333–341.

Huang, C.Y.-H., S. Butrapet, K. J. Moss, T. Childers, S.M. Erb, A. E. Calvert, S. J. Silengo, R.M. Kinney, C.D. Blair and J.T. Roehrig. 2010. The Dengue Virus Type 2 Envelope Protein Fusion Peptide Is Essential For Membrane Fusion. Virology. 396(2): 305–315.

Melo, M .N., F. J .R. Sousa, F.A. Carneiro, M.A.R.B. Castanho, A.P. Valente, F. C. L. Almeida, A.T.D. Poian and R.M.-Borges. 2009. Interaction of The Dengue Virus Fusion Peptide With Membranes Assessed By NMR: The Essential Role Of The Envelope Protein Trp101 For Membrane Fusion. Journal of Molecular Biology. 392(3): 736–746.

Wang, X.-Y., Q. Wang, X.-Y. Huang, T. Wang and X.-Q. Yu. 2006. Synthesis Of Small Cyclic Peptides Containing Disulfide Bonds. Arkivoc. 11:1-7.

Du, J. and R.K. O’Reilly. 2009. Advances And Challenges In Smart And Functional Polymer Vesicles. Soft Matter. 5(19): 3544–61.

Schmidt, A.G., P.L. Yang and S.C. Harrison. 2010. Peptide Inhibitors Of Dengue-Virus Entry Target A Late-Stage Fusion intermediate. PLoS Pathogens. 6(4): e1000851.

B.A. Tejo, U.S.F. Tambunan, G. Verkhivker and T.J. Siahaan. 2008. Structural Modifications Of ICAM-1 Cyclic Peptides To Improve The Activity To Inhibit Heterotypic Adhesion Of T Cells. Chemical Biology & Drug Design. 72(1): 27–33.

Jois, S.D., U.S. Tambunan, S. Chakrabarti and T.J. Siahaan. 1996. Solution Structure Of A Cyclic RGD Peptide That Inhibits Platelet Aggregation. Journal of Biomolecular Structure & Dynamics. 14(1): 1–11.

Sinaga, E., S.D.S. Jois, M. Avery, I.T. Makagiansar, U.S.F. Tambunan, K.L. Audus and T.J. Siahaan. 2002. Increasing Paracellular Porosity By E-Cadherin Peptides: Discovery Of Bulge And Groove Regions in the EC1-domain of E-cadherin. Pharmaceutical Research. 19(8): 1170–1179.

Tambunan, U.S.F., R.S. Noors and A.A. Parikesit. 2011. Molecular Dynamics Simulation of DENV RNA-Dependent RNA-Polymerase with Potential Inhibitor of Disulfide Cyclic Peptide. OnLine Journal of Biological Sciences. 11(2): 48–62.

Tambunan, U. S. F., A. A. Parikesit, Y. C. Unadi and D. Kerami. 2015. Designing Cyclopentapeptide Inhibitor of Neuraminidase H5N1 Virus Through Molecular and Pharmacology Simulations. Tsinghua Science and Technology. 20(5): 431–440.

Parikesit, A.A., H. Noviardi, D. Kerami and U.S.F. Tambunan. 2014. The Complexity of Molecular Interactions and Bindings between Cyclic Peptide and Inhibit Polymerase A and B1 (PAC-PB1N) H1N1. 9th Joint Conference on Chemistry. UNNES Press, Semarang. 1(1): 382–385.

A.A. Parikesit, H. Zahroh, A.S. Nugroho, A. Hapsari and U.S.F. Tambunan. 2013. The Computation of Cyclic Peptide with Prolin-Prolin Bond as Fusion Inhibitor of DENV Envelope Protein through Molecular Docking and Molecular Dynamics Simulation. In: UGM, editor. ICBS-UGM Conference Proceeding. Faculty of Biology, UGM. Yogyakarta. 415–421.

Parikesit, A.A., K. Kinanty and U.S.F. Tambunan. 2013. Screening of Commercial Cyclic Peptides as Inhibitor Envelope Protein Dengue Virus (DENV) Through Molecular Docking and Molecular Dynamics. Pakistan Journal of Biological Science. 16(24): 1836–1848.

Kampmann, T., R. Yennamalli, P. Campbell, M.J. Stoermer, D.P. Fairlie, B. Kobe and P.R. Young. 2009. In Silico Screening Of Small Molecule Libraries Using The Dengue Virus Envelope E Protein Has Identified Compounds With Antiviral Activity Against Multiple Flaviviruses. Antiviral Research. 84(3): 234–241.

Poh, M.K., A. Yip, S. Zhang, J.P. Priestle, N.L. Ma, J.M. Smit, J. Wilschut, P.-Y. Shi, M.R. Wenk and W. Schul. 2009. A Small Molecule Fusion Inhibitor Of Dengue Virus. Antiviral Research. 84(3): 260–266.

Wang, Q.-Y., S.J. Patel, E. Vangrevelinghe, H.Y. Xu, R. Rao, D. Jaber, W. Schul, F. Gu, O. Heudi, N.L. Ma and M.K. Poh. 2009. A Small-Molecule Dengue Virus Entry Inhibitor. Antimicrobial Agents and Chemotherapy. 53(5): 1823–31.

Zhu, R., L. Hu, H. Li, J. Su, Z. Cao and W. Zhang. 2011. Novel Natural Inhibitors of CYP1A2 Identified by in Silico and in Vitro Screening. International Journal of Molecular Sciences. 12(5): 3250–3262.

Masand, V .H., K. N. Patil, R.D. Jawarkar, T.B. Hadda, M.H. Youssoufi and A.A. Alafeefy. 2011. Exploring Interactions Of 2-Amino-6-Arylsulfonylbenzonitrile Derivatives As Non-Nucleoside Reverse Transcriptase Inhibitors Of HIV-1 Using Docking Studies. J Comput Method Mol Design. 1(3): 39–48.

Sotriffer, C. 2011. Virtual Screening: Principles, Challenges, and Practical Guidelines. Methods and Principles in Medicinal Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA.

Idrus, S. and U. S. F. Tambunan. 2012. Simulation Of Riboflavin Synthase In Eremothecium Gossypii Conversion of 6,7-dimethyl-8-ribityllumazine to riboflavin. Online Journal of Bioinformatics. 13: 41–9.

Idrus, S., U. S. F. Tambunan and A.A. Zubaidi. 2012. Designing Cyclopentapeptide Inhibitor As Potential Antiviral Drug For Dengue Virus Ns5 Methyltransferase. Bioinformation. 8(8): 348–352.

Tambunan, U. S. F., A. A. Parikesit, Y. Dephinto and F.R.P. Sipahutar. 2014. Computational Design Of Drug Candidates For Influenza A Virus Subtype H1N1 By Inhibiting The Viral Neuraminidase-1 Enzyme. Acta Pharmaceutica (Zagreb, Croatia), Hrvatsko farmaceutsko društvo. 64(2): 157–172.

Thompson, J.D., T.J. Gibson and D.G. Higgins. 2002. Multiple sequence alignment using ClustalW and ClustalX. Current Protocols in Bioinformatics / Editoral Board, Andreas D Baxevanis . [et al], Chapter 2, Unit 2.3.

Kalyaanamoorthy, S. and Y.-P.P. Chen. 2011. Structure-Based Drug Design To Augment Hit Discovery. Drug Discovery Today. 16(17): 831–839.

Oprea, T.I. 2002. Virtual Screening in Lead Discovery: A Viewpoint. Molecules, Molecular Diversity Preservation International. 7(1): 51–62.

Ursu, O., A. Rayan, A. Goldblum and T.I. Oprea. 2011. Understanding Drug-Likeness. Wiley Interdisciplinary Reviews: Computational Molecular Science. 1(5): 760–781.

Soltero, R. 2005. Oral Protein and Peptide Drug Delivery. In: Wang B, Siahaan TJ, and Soltero R, editors. Drug Delivery: Principles and Application, John Wiley & Sons, Inc. 189–200.

Hu, L. 2005. Prodrug Approaches to Drug Delivery. In: Wang B, Siahaan TJ, and Soltero R, editors. Drug Delivery: Principles and Application, John Wiley & Sons, Inc. 125–165.

Downloads

Published

2016-04-18

How to Cite

DESIGNING DISULFIDE CYCLIC PEPTIDE AS FUSION INHIBITOR THAT TARGETS DENV ENVELOPE PROTEIN. (2016). Jurnal Teknologi, 78(4-3). https://doi.org/10.11113/jt.v78.8259