IMAGE RECONSTRUCTION BASED ON COMPRESSIVE SAMPLING USING IRLS AND OMP ALGORITHM
DOI:
https://doi.org/10.11113/jt.v78.8327Keywords:
Compressive sampling, wavelet, random orthonormal, orthogonal matching pursuit, Iteratively Reweighted Least SquaresAbstract
We proposed compressive sensing to reduce the sampling rate of the image and improve the accuracy of image reconstruction. Compressive sensing requires that the representation of the image is sparse on a certain basis. We use wavelet transformation to provide sparsity matrix basis. Meanwhile, to get a projection matrix using a random orthonormal process. The algorithm used to reconstruct the image is orthogonal matching pursuit (OMP) and Iteratively Reweighted Least Squares (IRLS). The test result indicates that a high quality image is obtained along with the number of coefficients M. IRLS has a good performance on PSNR than OMP while OMP takes the least time for reconstruction.
References
Donoho, D. L. 2006. Compressive Sampling. IEEE Transaction on Information Theory. 1289-1306.
Wahidah, Ida, Hendrawan, Mengko, Tati L. R., Suksmono, A. B. 2014. Parameter Estimetion for Coefficient Thresholding in Block-Based Compressive Video Coding. International Journal of Imaging and Robotic.
Lustiq, M., Donoho, D., & Pauly, J. 2007. Sparse MRI: The Application of Compressed Sensing for Rapi MR Imaging. Magnetic Resonance in Medicine. 58(6): 1182-1195.
Gamper, U., Boesiger, P., & Kozerke, S. 2008. Compressed Sensing in Dynamic MRI. Magnetic Resonance in Medicine. (59(2): 365-373.
Lustig, M., Donoho, D., Santos, J., & Pauly, J. 2008. Compressed sensing MRI. IEEE Signal Processing Magazine. 25(2): 72-82.
Herrmann, F., & Hennenfent, G. 2008. Non-parametic Seismic Data Data Recovery with Curvelet Frame. Geophysical Journal International. 173(1): 233-248.
Baraniuk, R., & Steeghs, P. 2007. Compressive Radar Imaging. IEEE Radar Conference. 128-133.
Candes, E., & Walkin, M. 2008. An Introduction of Compressive Sampling. Signal Processing Magazine. 25(2): 21-30.
Baraniuk, & G, R. 2007. Compressive Sensing, Lecture Note. IEEE Signal Processing Magazine. 118-121.
Suksmono, A. B. (n.d.). Memahami Penginderaan Kompresif dengan MATLAB. Bandung: Institut Teknologi Bandung.
Qaisar, S., Bilal, R., Iqbal, W., Naureen, M., & Lee, S. (n.d.). Compressive Sensing: From Theory to Application, A Survey.
Needell, D., Tropp, R., & Vershynin, R. 2008. Greedy Signal Recover Review. www.acm.caltech.edu/~jtroop/conf/NTV08-greedy-signal-asilomar.pdf.
Tropp, J. and Gilbert, A. N. 2007. Signal Recovery from Random Measurement via Orthogonal Matching Pursuit. IEEE Transaction On Information Theory. 53(12): 4655-4666.
Chartrand, R.; Yin, W. 2008. Iteratively Reweighted Algorithms For Compressive Sensing. IEEE International Conference on Acoustics. Speech and Signal Processing (ICASSP). 3869-3872.
Rao, B. D., Kreutz-Delgado, K. 1999. An Affine Scaling Methodology for Best Basis Selection. IEEE Trans. Signal Process. 47: 187-200.
Yang, F., Wang, S., & Deng, C. 2010. Compressive Sensing of Image Reconstruction Using Multi-Wavelet Transform. IEEE Magazine.
Islam, Md. S, Huang, X., Ou, K. L. 2015. Image Compression Based on Compressive Sensing Using Wavelet Lifting Scheme. The International Jurnal of Multimedia & Its Application (IJMA). 7(1).
G. Steward. 1980. The Efficient Generation of Random Orthogonal Matries with An Application to Condition Estimators. SIAM J. Numer. Anal. 17(3): 402-409.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.