THE EFFECT OF DIFFERENT AMBIENT TEMPERATURE TO SOLAR COOLING PERFORMANCE

Authors

  • Dewanto Harjunowibowo Sebelas Maret University, Jalan Ir.Sutami No. 36A, Surakarta, 57126, Indonesia
  • Dina Nur Adilah Sebelas Maret University, Jalan Ir.Sutami No. 36A, Surakarta, 57126, Indonesia
  • Dwi Teguh Rahardjo Sebelas Maret University, Jalan Ir.Sutami No. 36A, Surakarta, 57126, Indonesia
  • Danar S. Wijayanto Sebelas Maret University, Jalan Ir.Sutami No. 36A, Surakarta, 57126, Indonesia
  • Fredy Surahmanto Yogyakarta State University, Jl. Colombo No. 1, Yogyakarta, 55281, Indonesia
  • Teguh P. Adinugroho National Standardization Agency, Jl M.H. Thamrin No. 8, Kebon Sirih, Jakpus, 10340, Indonesia

DOI:

https://doi.org/10.11113/jt.v78.8575

Keywords:

Solar cooling, adsorption, ambient temperature, COP, heat transfer, mass transfer

Abstract

The density of adsorbent bed significantly contributed to solar cooling performance (COP). The density determines how well the heat and mass transfer are. Besides that, the COP is also determined by ambient temperature. This research aims to investigate the affect of temperature of a connecting pipe, as a representative of different ambient temperature against a solar cooling machine performance. The experiment will show in what condition a solar cooling is going to have a better cooling result. The data used in this case was taken experimentally and conducted using a solar cooling machine equipped with temperature measurement units such as thermocouple logger. For cold ambient temperature, in adsorption process, refrigerant vapour flows to the generator through the connecting pipe cooled by water and kept steady. The results show that the COP, heat and mass transfer of adsorbent bed of the system in the adsorption process on a warm condition are better than in a cold environment. In the warm condition the COP system is 0.24, the heat transfer rate is 0.06 °C/minute, and the mass transfer rate is 1.09 ml/minute. Whereas, in the cold condition the COP system is 0.23, the heat transfer rate is 0.05 °C/minute, and the mass transfer rate is 1.04 ml/minute. 

References

Suwono, A., Hermanto, A., Abdurrochim, Pasek, A. D. 2005. Pengembangan Metode Simulasi Sistem Pengkondisian Udara Energi Surya. Jurnal Teknik Mesin. 20(2): 58-67.

Agus Sugiyono, Anindhita, M. Sidik Boedoyo, A. (Ed.). 2014. Indonesia Energy Outlook 2014. PTPSE, BPPT.

Moh, Ali H. 2011. Praktek Lingkungan Hidup. Bandung: IPDN Press.

Molina, M. J., & Rowland, F. S. 1974. Stratospheric Sink For Chlorofluoromethanes: Chlorine Atom-Catalysed Destruction Of Ozone. Nature. 249(28): 810-812.

Hartmann, N., Glueck, C., Schmidt, F.P. 2011. Solar Cooling For Small Office Buildings: Comparison Of Solar Thermal And Photovoltaic Options For Two Different European Climates. Renewable Energy. 36(5): 1329-1338.

Baluch, N., Mohtar, S., & Ariffin, A. S. 2015. Green Energy: An Analytical Discourse. Jurnal Teknologi. 77(4): 135-143.

Stoecker, W. F., & Jerold, W. J. 1992. Refrigerasi dan Pengkondisian Udara. alih bahasa Supratman Hara. Edisi Kelima. Penerbit Erlangga. Jakarta

Balaras, C. A., Grossman, G., Henning, H. M., Ferreira, C. A. I., Podesser, E., Wang, L., & Wiemken, E. 2007. Solar Air Conditioning In Europe-An Overview. Renewable and Sustainable Energy Reviews. 11(2): 299-314.

Wang, R. Z. 2001. Adsorption Refrigeration In Shanghai Jiao Tong University. Renewable and Sustainable Energi Reviews. 5(1): 1-37.

Wang, R. Z., and Oliveira, R. G. 2006. Adsorption Refrigeration-An Efficient Way To Make Good Use Of Waste Heat And Solar Energy. Progress in Energy and Combustion Science. 32(4): 424-458.

Li, M, Sun, C. J., Wang, R. Z. and Cai, W. D. 2004. Development of No Valve Solar Ice Maker. Applied Thermal Engineering. 24: 865-872.

Amber, I., Odekhe, R. O., & Sanusi, Y. S. 2012. Experimental Determination Of The Adsorption Capacity Of Synthetic Zeolite A/Water Pair For Solar Cooling Applications. Journal of Mechanical Engineering Research. 4(4): 142-147.

Chen, C. J., Wang, R. Z., Xia, Z. Z., Kiplagat, J. K., & Lu, Z. S. 2010. Study On A Compact Silica Gel–Water Adsorption Chiller Without Vacuum Valves: Design And Experimental Study. Applied Energy. 87(8): 2673-2681.

Li, M., Huang, H. B., Wang, R. Z., Wang, L. L., Cai, W. D., & Yang, W. M. 2004. Experimental Study On Adsorbent Of Activated Carbon With Refrigerant Of Methanol And Ethanol For Solar Ice Maker. Renewable Energy. 29(15): 2235-2244.

Critoph, R. E. 1988. Performance Limitation Of Adsorption Cycles For Solar Cooling. Solar Energy. 41(1): 21-31.

Pons, M., & Guilleminot, J. J. 1986. Design Of An Experimental Solar-Powered, Solid-Adsorption Ice Maker. Journal Of Solar Energy Engineering. 108(4): 332-337.

Li, Z. F., & Sumathy, K. 1999. A Solar-Powered Ice-Maker With The Solid Adsorption Pair Of Activated Carbon And Methanol. International Journal of Energy Research. 23(6): 517-527.

Sumathy, K., & Zhongfu, L. 1999. Experiments with Solar-Powered Adsorption Ice-maker. Renewable Energy. 16(1): 704-707.

Li, M., Wang, R. Z., Luo, H. L., Wang, L. L., Huang, H. B. 2002. Experiments Of A Solar Flat Plate Hybrid System With Heating And Cooling. Applied Thermal Engineering. 22(13):1445-1454.

Harjunowibowo, D., Rahayu, J. T. W., & Wijayanto, D. S. 2014. Model Eksperimen Konversi Energi Sistem Refrigerasi Dengan Metode Adsorpsi. Jurnal Materi dan Pembelajaran Fisika. 4(2): 4-19.

Clausse, M., Alam, K. C. A., & Meunier, F. 2008. Residential Air Conditioning And Heating By Means Of Enhanced Solar Collectors Coupled To An Adsorption System. Solar Energy. 82(10): 885-892.

Alva, L. H., & González, J. E. 2002. Simulation Of An Air-Cooled Solar-Assisted Absorption Air Conditioning System. Journal Of Solar Energy Engineering. 124(3): 276-282.

Mittal, V., Kasana, K. S., & Thakur, N. S. 2005. The Study Of Solar Absorption Air-Conditioning Systems. Journal of Energy in Southern Africa. 16(4): 59-66.

Hu, E. J. 1998. A Study Of Thermal Decomposition Of Methanol In Solar Powered Adsorption Refrigeration Systems. Solar Energy. 62(5): 325-329.

Tipler, P. A. 1998. Fisika untuk Sains dan Teknik. Jakarta: Erlangga.

Downloads

Published

2016-05-09

How to Cite

THE EFFECT OF DIFFERENT AMBIENT TEMPERATURE TO SOLAR COOLING PERFORMANCE. (2016). Jurnal Teknologi (Sciences & Engineering), 78(5-5). https://doi.org/10.11113/jt.v78.8575