SELECTIVITY OF CANDIDA RUGOSA LIPASE IMMOBILIZED ONTO LAYERED DOUBLE HYDROXIDES AS CATALYST IN SYNTHESIS OF FATTY ACID ESTERS

Authors

  • Mohd Basyaruddin Abdul Rahman Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
  • Siti Salhah Othman Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan, Malaysia
  • Noor Mona Md Yunus Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan, Malaysia

DOI:

https://doi.org/10.11113/jt.v78.8647

Keywords:

Immobilized lipases, esterification, layered double hydroxides

Abstract

The enzymatic selectivity of Lipase from Candida rugosa immobilized onto a calcined layered double hydroxide (CLDHs-CRL) towards the chain-length of fatty acids and alcohols in the synthesis of fatty acid esters was investigated.  The results showed that CMAN-CRL catalyzed the esterification process with fatty acids of medium chain lengths (C10-C14) effectively while, CNAN-CRL and CZAN-CRL exhibited high percentage conversion in fatty acids with carbon chain lengths of C8-C12 and C10-C18, respectively. In the alcohol selectivity study, CMAN-CRL showed high selectivity toward alcohols with carbon chain lengths of C4, C6 and C10.  On the other hand, both CNAN-CRL and CZAN-CRL exhibited rather low selectivity towards longer carbon chain length of alcohols. 

References

Growth In Fatty Esters Driven By Personal Care Market, Retrieved July 15, 2015 from http://www.cosmeticsdesign.com/Formulation-Science/Growth-in-fatty-Esters-driven-by-personal-care-market.

Foresti, M. L., Errazu, A. and Ferreira, M. L. 2005. Effect Of Several Reaction Parameters In The Solvent-Free Ethyl Oleate Synthesis Using Candida Rugosa Lipase Immobilised On Polypropylene. Biochemical Engineering Journal. 25: 69-77.

Zaidi, A., Gainer, J. L., Carta G., Mrani, A., Kadiri, T., Belarbi, Y. and Mir, A. 2002. Esterification Of Fatty Acids Using Nylon-Immobilized Lipase In N-Hexane: Kinetic Parameters And Chain Length Effects. Journal of Biotechnology. 93: 209-216.

Yan, H. D., Zhang Q. and Wang, Z. 2014. Biocatalytic Synthesis Of Short-Chain Flavor Esters With High Substrate Loading By A Whole-Cell Lipase From Aspergillus Oryza. Catalysis Communications. 45: 59-62.

Gumel, A. M., Annuar, M. S. M., Heidelberg, T. and Chisti, Y. 2011. Lipase Mediated Synthesis Of Sugar Fatty Acid Esters. Process Biochemistry. 46: 2079-2090.

Yadav, G. D. and Lathi, P. S. 2003. Kinetics And Mechanism Of Synthesis Of Butyl Isobutyrate Over Immobilised Lipases. Biochemical Engineering Journal. 16: 245-252.

Jain, D. and Mishra, S. 2015. Multifunctional Solvent Stable Bacillus Lipase Mediated Biotransformations In The Context Of Food And Fuel. Journal of Molecular Catalysis B: Enzymatic. 117: 21-30.

De Miranda, A., Miranda L. S. M. and de Souza R. O. M. A. 2015. Lipase: Valuable Catalysts For Dynamic Kinetic Resolutions. Biotechnology Advances. 33: 372-393.

Nill, K. R. 2002. Glossary of Biotechnology Term. 3rd (Ed.). Boca Raton: CRC Press.

Martins, A. B., da Silva, A. M., Schein, M. F., Garcia-Galan, C., Zachia Ayub, M. A., Fernandez-Lafuente, R. and Rodrigues, R. C. 2014. Comparison Of The Performance Of Commercial Immobilized Lipases In The Synthesis Of Different Flavor Esters. Journal of Molecular Catalysis B: Enzymatic. 105: 18-25.

Reineccius, G. 2005. Flavor Chemistry And Technology. 2nd (Ed.). Boca Raton: Taylor & Francis.

Hasan, F., Shah, A. A. and Hameed, A. 2006. Industrial Applications Of Microbial Lipases. Enzyme and Microbial Technology. 39: 235-251.

Balcao, V. M. and Malcata, F. X. 2002. Enzyme-mediated Modification Of Milkfat. In T. M. Kuo and H.W. Gardner (eds.). Lipid Biotechnology. New York: Marcel Dekker.

Akoh, A. C., Sellapan, S., Fomuso, L. B., Yankah, V. V. 2002. Enzymatic Synthesis of Structured Lipids. In T.M. Kuo and H.W. Gardner (Eds.). Lipid Biotechnology. New York: Marcel Dekker, Inc.

Stergiou, P. –Y., FOukis, A., Filippou, M., Koukouritaki, M., Parapouli, M., Theodorou, L. G., Hatziloukas, E., Afendra, A., Pandey, A and Papamichael, E. M. 2013. Advances In Lipase-Catalyzed Esterification Reactions. Biotechnology Advances. 31: 1846-1859.

Chang, S. W., Huang, M., Hsieh, Y. H., Luo, Y. T., Wu, T. T., Tsai, C. W., Chen, C. S. and Shaw, J. F. 2014. Simultaneous Production Of Fatty Acid Methyl Esters And Diglycerides By Four Recombinant Candida Rugosa Lipase’s Isozymes. Food Chemistry. 155: 140-145.

Meunier, S. M. Rajabzadeh, A. R., Williams, T. G. and Legge, R. L. 2015. Methyl Oleate Production in a supported Sol-Gel Immobilized Lipase Packed Bed Reactor. Energy & Fuels. 29: 3168-3175.

Izrael Zivkovic, L. T., Zivkovic, L. S., Babic, B. M., Kokunesoski, M. J., Jokic, B. M. and Karadzic, I. M. 2015. Immobilization Of Candida Rugosa Lipase By Adsorption Onto Biosafe Meso/Macroporous Silica And Zirconia. Biochemical Engineering Journal. 93: 73-83.

Zhou, Z., Piepenbreier, Reddy marthala, V. R., Larbacher, K and Hartmann, M. 2015. Immobilization Of Lipase In Cage-Type Mesoporous Organosilicas Viacovalent Bonding And Crosslinking. Catalysis Today. 243: 173-183.

Abdul Rahman, M. B., Basri, M., Hussein, M. Z., Abdul Rahman, R. N. Z., Zainol, D. H. and Salleh, A. B. (2004a). Immobilization Of Lipase From Candida Rugosa On Layered Double Hydroxides For Esterification Reaction. Applied Biochemistry and Biotechnology. 118: 313-319.

Abdul Rahman, M. B., Basri, M., Hussein, M. Z., Idris, M. N. H., Raja Abdul Rahman, R. N. Z. and Salleh, A. B. 2004b. Immobilisation Of Lipase From Candida Rugosa On Layered Double Hydroxides Of Mg/Al And Its Nanocomposites As Biocatalyst For The Synthesis Of Ester. Catalysis Today. 93-95: 405-410.

Liu, X. M., Hang, Y. H., Zhang, X. G. and Fu, S. Y 2004a. Studies On Me/Al Layered Double Hydroxides (Me = Ni And Co) As Electrode Materials For Electrochemical Capacitors. Electrochimica Acta. 49: 3137-3141.

dos Reis, M. J., Silverio, F., Tronto, J. and Valim, J. B. 2004. Effects Of Ph, Temperature, And Ionic Strength On Adsorption Of Sodium Dodecylbenzenesulphonate Into Mg-Al-CO3 Layered Double Hydroxides. Journal of Physics and Chemistry of Solids. 65: 487-492.

Carja, G. Nakamura, R. and Niiyama, H. 2005. Tailoring The Porous Properties Of Iron Containing Mixed Oxides For As (V) Removal From Aqueous Solutions. Microporous and Mesoporous Materials. 83: 94-100.

Kwak, S. Y., Kriven, W. M., Wallig, M. A. and Choy, J. H. 2004. Inorganic Delivery Vector For Intravenous Injection. Biomaterials. 25: 5995-6001.

Shi, W., Wei, M., Jin, L. and Li, C. 2007. Calcined Layered Double Hydroxides As A “Biomolecular Vessel†For Bromelain: Immobilization, Storage And Release. Journal of Molecular Catalysis B: Enzymatic. 47: 58-65.

Yagiz, F., Kazan, D. and Nilgun Akin, A. 2007. Biodiesel Production From Waste Oils By Using Lipase Immobilized On Hydrotalcite And Zeolites. Chemical Engineering Journal. 134: 262-267.

Ren, L., He, Jing., Evans, D. G., Duan, X. and Ma, R. 2001. Some Factors Affecting The Immobilization Of Penicillin G Acylase On Calcined Layered Double Hydroxides. Journal of Molecular Catalysis B: Enzymatic. 16: 65-71.

Abdul Rahman, M. B., Zaidan, U. H., Basri, M., Salleh, A. B., Raja Abdul Rahman, R. N. Z. and Hussein, M. B. 2008. Enzymatic Synthesis Of Methyl Adipate Ester Using Lipase From Candida Rugosa Immobilised On Mg, Zn And Ni Of Layered Double Hydroxides (LDHs). Journal of Molecular Catalysis B: Enzymatic. 50: 33-39.

Abdul Rahman, M. B., Md Yunus, N. M., Hussein, M. Z., Idris M. N. H., Raja Abdul Rahman, R. N. Z., Salleh A. B. and Basri M. 2005. Application Of Advanced Materials As Support For Immobilisation Of Lipase From Candida Rugosa. Biocatalysis and Biotransformation. 23: 233-239.

Lee, G. C., Lee, L. C., Sava, V. And Shaw, J. F. 2002. Multiple Mutagenesis Of Nonuniversal Serine Codons Of Candida Rugosa LIP2 Gene And The Biochemical Characterization Of The Purified Recombinant LIP2 Lipase Overexpresed In Pichia Pastoris. Biochemical Journal. 366: 603-611.

Bayramoglu, G., Yilmaz, M., and Yakup Arica, M. 2004. Immobilization Of A Thermostable ï¡-Amylase Onto Reactive Membranes: Kinetics Characterization And Application To Continuous Starch Hydrolysis. Food Chemistry. 84: 591-599.

Pereira, E. B., Zanin, G. M. and Castro, H. F. 2003. Immobilization And Catalytic Properties Of Lipase On Chitosan For Hydrolysis And Esterification Reactions. Brazilian Journal of Chemical Engineering. 20: 343-355.

Bradoo, S., Rathi, P., Saxena, R. K. and Gupta, R. 2002. Microwave-assisted Rapid Characterization Of Lipase Selectivities. Journal of Biochemistry and Biophysic Methods. 51: 115-120.

Deng, H. T., Xu, Z. K., Liu, Z. M., Wu, J. and Ye, P. 2004. Adsorption Immobilization Of Candida Rugosa Lipases On Polypropylene Hollow Fiber Microfiltration Membranes Modified By Hydrophobic Polypeptides. Enzyme and Microbial Technology. 35: 437-443.

Bradford, M. M. 1976. A Rapid And Sensitive Method For The Quantification Of Microgram Quantities Of Protein Utilizing The Principle Of Protein-Dye Binding. Analytical Biochemistry. 72: 248-254.

Basri, M., Ampon, K., Wan Yunus, W. M. Z., Razak, C. N. A. and Saleh, A. B. 1997. Enzymatic Synthesis Of Fatty Esters By Alkylated Lipase. Journal of Molecular Catalysis B: Enzymatic. 3: 17I-176.

Schmitt, J., Broccca, S., Schmid, R. D., and Pleiss, J. 2002. Blocking The Tunnel:Engineering Of Candida Rugosa Mutants With Short Chain Length Specificity. Protein Engineering. 15: 595-601.

Gandhi, N. N., Sawant, S. B. and Joshi, J. B. 1995. Specificity Of Lipase In Ester Synthesis: Effect Of Alcohol. Biotechnology Progress. 11: 282-287.

Abbas, H. and Comeau, L. 2003. Aroma Synthesis By Immobilized Lipase From Mucor sp. Enzyme and Microbial Technology. 32: 589-595.

Downloads

Published

2016-05-16

How to Cite

SELECTIVITY OF CANDIDA RUGOSA LIPASE IMMOBILIZED ONTO LAYERED DOUBLE HYDROXIDES AS CATALYST IN SYNTHESIS OF FATTY ACID ESTERS. (2016). Jurnal Teknologi, 78(5-6). https://doi.org/10.11113/jt.v78.8647