DEVELOPMENT OF AN ELECTRONIC AEROSOL SYSTEM FOR GENERATING MICROCAPSULES
DOI:
https://doi.org/10.11113/jt.v78.8718Keywords:
Electronic aerosol system, Arduino-Uno, airflow rate, microcapsules, size distributionAbstract
The encapsulation of living cells in a variety of soft polymers or hydrogels is important, particularly for the generation of microtissues. Various techniques have been developed for the production of microcapsules to encapsulate cells but presented threat to the cells due to the harsh treatment during the encapsulation process. In this paper, we propose a simple, economic and compact design of aerosol electronic system for producing different sizes of microcapsules. The aerosol system was developed with the incorporation of a conventional syringe pump and a customised air pump. The syringe pump purged the droplets of sodium alginate and air pump dispersed the droplets into microdroplets of sodium alginate which was then polymerised in the calcium chloride solution. In this system, the air flow rate from the air pump was controlled by a programmed microcontroller that received input instructions from a potentiometer. The suitable air flow rates that worked synchronously with the speed of the syringe pump were characterised. At 0.2 and 0.3 L/min of air flow and 20 µl/min of alginate solution flow, this device successfully generated round microcapsules with various sizes ranging from 100 to 350 µm.
References
Jinchen Sun H. T.. 2013. Review Alginate-Based Biomaterials for Regenerative Medicine Applications. Materials. 6(4): 1285-1309.
Ghidoni I., Chlapanidas T., Bucco M., Crovato F., Marazzi M., Vigo D., et al. 2008. Alginate Cell Encapsulation: New Advances In Reproduction And Cartilage Regenerative Medicine. Cytotechnology. 58(1): 49-56.
Keng-Shiang Huang, Ming-Kai Liu, Chun-HanWu, Yu-Tang Yen, and Y.-C. Lin. 2007. Calcium Alginate Microcapsule Generation On A Microfluidic System Fabricated Using The Optical Disk Process. Journal of Micromechanics and Microengineering. 17: 1428–1434.
Hu Y., Wang Q., Wang J., Zhu J., Wang H., and Yang Y.. 2012. Shape Controllable Microgel Particles Prepared By Microfluidic Combining External Ionic Crosslinking. Biomicrofluidics. 6(2): 26502-265029.
Zhang W. and He X. 2009. Encapsulation Of Living Cells In Small ( Approximately 100 Microm) Alginate Microcapsules By Electrostatic Spraying: A Parametric Study. Journal Biomechical Engineering 131(7): 074515.
Dorota Lewinska, Jozef Bukowski, Marek Kozuchowski, Andrzej Kinasiewicz, and A. Werynski. 2008. Electrostatic Microencapsulation of Living Cells. Biocybernetics and Biomedical Engineering. 28(2): 69–84.
Li N., Xu X. X., Sun G. W., Guo X., Liu Y., Wang S. J., et al. 2013. The Effect Of Electrostatic Microencapsulation Process On Biological Properties Of Tumour Cells. Journal Microencapsule 30(6): 530-7.
Martin-Banderas A. M. G.-C. L., Fernandez-Arevalo M.. 2010. Making Drops in Microencapsulation Processes. Letters in Drug Design & Discovery. 7(4): 300-309.
Martinez C. J., Kim J. W., Ye C., Ortiz I., Rowat A. C., Marquez M., et al. 2012. A Microfluidic Approach To Encapsulate Living Cells In Uniform Alginate Hydrogel Microparticles. Macromol Biosci. 12(7): 946-51.
Gautier A., Carpentier B., Dufresne M., Vu Dinh Q., Paullier P., And Legallais C. 2011. Impact Of Alginate Type And Bead Diameter On Mass Transfers And The Metabolic Activities Of Encapsulated C3A cells In Bioartificial Liver Applications. Eur Cell Mater. 21: 94-106.
Sugiura S., Oda T., Izumida Y., Aoyagi Y., Satake M., Ochiai A., et al. 2005. Size Control Of Calcium Alginate Beads Containing Living Cells Using Micro-Nozzle Array. Biomaterials. 26(16): 3327-31.
Wan J. 2012. Review Microfluidic-Based Synthesis of Hydrogel Particles for Cell Microencapsulation and Cell-Based Drug Delivery Polymers. 4(2): 1084-1108.
Orive G., Hernandez R. M., Rodriguez Gascon A., Calafiore R., Chang T. M., de Vos P., et al. 2004. History, Challenges And Perspectives Of Cell Microencapsulation. Trends Biotechnol. 22(2): 87-92.
Herrero E.P., Mart´ın Del Valle E.M., andGalan M. A. 2006. Development Of A New Technology For The Production Of Microcapsules Based In Atomization Processes. Chemical Engineering Journal. 117: 137-142.
Sugiura S., Oda T., Aoyagi Y., Matsuo R., Enomoto T., Matsumoto K., et al. 2007. Microfabricated Airflow Nozzle For Microencapsulation Of Living Cells Into 150 Micrometer Microcapsules. Biomed Microdevices. 9(1): 91-9.
Tendulkar S., Mirmalek-Sani S. H., Childers C., Saul J., Opara E. C., and Ramasubramanian M. K. 2012. A Three-Dimensional Microfluidic Approach To Scaling Up Microencapsulation Of Cells. Biomed Microdevices. 14(3): 461-9.
Rama Dubey T. C. S., Bhasker Rao K.U. 2009. Microencapsulation Technology and Applications. Defence Science Journal 59(1): 82-95.
Paredes Juarez G. A., Spasojevic M., Faas M. M., and de Vos P. 2014. Immunological And Technical Considerations In Application Of Alginate-Based Microencapsulation Systems. Front Bioeng Biotechnol. 2: 26.
Teixeira R. F. A., Berg O. v. d., Nguyen L.-T. T., Fehér K., and Prez F. E. D. 2014. Microencapsulation of Active Ingredients Using PDMS as Shell Material. Macromolecules. 47(23): 8231-8237.
Glaucia Aguiar Rocha and Carmen SÃlvia Fávaro-Trindade C. R. F. G. 2012. Microencapsulation Of Lycopene By Spray Drying: Characterization, Stability And Application Of Microcapsules. Food And Bioproducts Processing. 90(1): 37-42.
Anil Kumar Anal and H. Singh H. 2007. Review Recent Advances In Microencapsulation Of Probiotics For Industrial Applications And Targeted Delivery. Trends in Food Science & Technology. 18(5): 240-251.
Yongliang Zhao, Yanqing Li, Dan E. Demco, X. Zhu, and M. Möller. 2014. Microencapsulation of Hydrophobic Liquids in Closed All-Silica Colloidosomes. Langmuir. 30(15): 4253-4261.
Herrero E. M. M. ı. D. V. E.P., Galan M.A. 2006. Development Of A New Technology For The Production Of Microcapsules Based In Atomization Processes. Chemical Engineering Journal. 117: 137-142.
Chen W., Kim J. H., Zhang D., Lee K. H., Cangelosi G. A., Soelberg S. D., et al. 2013. Microfluidic One-Step Synthesis Of Alginate Microspheres Immobilized With Antibodies. J R Soc Interface. 10(88): 20130566.
Haeberle S., Naegele L., Burger R., von Stetten F., R. Zengerle, and Ducree J. 2008. Alginate Bead Fabrication And Encapsulation Of Living Cells Under Centrifugally Induced Artificial Gravity Conditions. Journal Microencapsule. 25(4): 267-74.
Gareau D. 2011. Automated Identification Of Epidermal Keratinocytes In Reflectance Confocal Microscopy. Journal Biomedical Optic 16(3): 030502.
Whitton J. T. and Everall J. D. 1973. The Thickness Of The Epidermis. British Journal Dermatology. 89(5): 467-76.
Sharma R. 2010. Gadolinium Toxicity: Epidermis Thickness Measurement By Magnetic Resonance Imaging at 500 MHz. Skin Res Technol. 16(3): 339-53.
Hoath S. B. andLeahy D. G. 2003. The Organization Of Human Epidermis: Functional Epidermal Units And Phi Proportionality. Journal Investigative Dermatology. 121(6): 1440-6.
Chicheportiche D.and Reach G. 1988. In Vitro Kinetics Of Insulin Release By Microencapsulated Rat Islets: Effect Of The Size Of The Microcapsules. Diabetologia. 31(1): 54-7.
Leblond F. A., Simard G., Henley N., B. Rocheleau, Huet P. M., and Halle J. P. 1999. Studies On Smaller (Approximately 315 Microm) Microcapsules: IV. Feasibility And Safety Of Intrahepatic Implantations Of Small Alginate Poly-L-Lysine Microcapsules. Cell Transplant. 8(3): 327-37.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.