GENERATION OF Q-SWITCHED THULIUM-DOPED FIBER LASER (TDFL) USING DIFFERENTSATURABLE ABSORBERS

Authors

  • N. Mohd Sharif Razak School of Engineering and Advanced Technology, Universiti Teknologi Malaysia, Level 7, Razak Tower, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
  • N. Md. Yusoff Razak School of Engineering and Advanced Technology, Universiti Teknologi Malaysia, Level 7, Razak Tower, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
  • M. A. Mohd. Izhar Razak School of Engineering and Advanced Technology, Universiti Teknologi Malaysia, Level 7, Razak Tower, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
  • F. Ahmad Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra (Jalan Semarak), 54100 Kuala Lumpur, Malaysia
  • S. W. Harun Photonics Research Center, Universiti Malaya, Lembah Pantai , 50603, Kuala Lumpur, Malaysia
  • H. Ahmad Photonics Research Center, Universiti Malaya, Lembah Pantai , 50603, Kuala Lumpur, Malaysia

DOI:

https://doi.org/10.11113/jt.v78.8810

Keywords:

Saturable absorber, Q-switched

Abstract

A Q-switched Thulium-doped Fiber Laser (TDFL) operating at approximately 2 μm wavelength is successfully generated by using four different saturable absorbers (SAs) which are nitrogen-doped graphene in PVA (NG:PVA), nitrogen-doped graphene in PEO (NG:PEO), single-walled carbon nanotube in PVA (SWCNT:PVA), and high pressure carbon monoxide carbon nanotube in PVA (CNTHiPCO:PVA). The SAs integrated in the cavity were able to provide the real saturable absorption in modulating the intra-cavity losses. SWCNT gives the best results with the highest repetition rate and lowest pulse width of 57.45 kHz and 1.958 nJ correspondingly as compared to the other three SAs. 

References

Yan Sun, A.K.S.1999. Jianhui Zhou, and James W. Sulhoff, Optical Fiber Amplifiers for WDM Optical Networks. Bell Labs Technical Journal. 1(4): 187-206.

Yusoff, N.Md.,AbasA.F.,HitamS., and MahdiM.A., 2012. Dual-Stage L-Band Erbium-Doped Fiber Amplifier With Distributed Pumping From Single Pump Laser. Optics Communication. 285(6): 1383-1386

Keiser G., Optical Fiber Communications. 2010, Singapore: McGraw-Hill.

LiZ.,A.M.H., DanielJ. M. O.,JungY.,AlamS. U., and Richardson D. J. 2013. Thulium-Doped Fiber Amplifier For Optical Communications At 2 Um. Optics Express

Li Z., A.M.H., SimakovN., JungY., Danielj. M. O., Alam, S. U. And Richardsond. J., 2013. Diode-Pumped Wideband Thulium-Doped Fiber Amplifiers For Optical Communications In The 1800-2050 Nm Window. Optics Express

Liu C., Ye C., Luo Z., Cheng H., Zheng Y., Liu Z., and Qu B., , 2013. High-Energy Passively Q-Switched 2 Îœm Tm3+- Doped Double-Clad Fiber Laser Using Grapheneoxide- Deposited Fiber Taper. Optics Express. 21(1): 204-209.

Ahmad, H., Zulkifli, A. Z., Thambiratnam, K., and Harun, S. W. 20132.0-m Q-Switched Thulium-Doped Fiber Laser With Graphene Oxide Saturable Absorber. IEEE Photonics Journal. 5(4): 121-129.

Stutzki F., Gaida C., Gebhart M., Jansen F., Jauregui C., Limpert J., and Tunnerman A. 2015. Tm-Based Fiber-Laser System With More Than 200  MW Peak Power. Optics Letters. 40(1): 9-12.

Jackson, S.D. 2012. Towards High-Power Mid-Infrared Emission From A Fibre Laser. Nat Photon. 6(7): 423-431.

Fu, S., Sheng, Q., Shi, W., Tian, X., Fang, Q., and Yao, J. 2015. 2µm Actively Q-Switched All Fiber Laser Based On Stress-Induced Birefringence And Commercial Tm-Doped Silica Fiber. Optics & Laser Technology. 70(0): 26-29.

Yang L.-M., WanP., Protopopov V., and Liu J.2012. 2 µm Femtosecond Fiber Laser At Low Repetition Rate And High Pulse Energy. Optics Express. 20(5): 5683-5688.

Zhang M., Kelleher E. J. R., Torrisi F., Sun Z., Hassan T., Popa D., Wang F., Ferrari A. A., Popov S. V., and Taylor J. R.2012. Tm-Doped Fiber Laser Mode-Locked By Graphene-Polymer Composite. Optics Express. 20(22): 25077-25084.

Dong M., et al.2015. Pulse-State Switchable Fiber Laser Mode-Locked by Carbon Nanotubes. Photonics Technology Letters, IEEE. 27(3): 253-256.

Dong B., Hao J., Hu J., and Liaw C-Y. 2011. Short Linear-Cavity Q-Switched Fiber Laser With A Compact Short Carbon Nanotube Based Saturable Absorber. Optical Fiber Technology. 17(2): 105-107.

Tiu Z.C., Zarei A., Tan S.J., Ahmad H., and Harun S. W.2014., Q-Switching Pulse Generation with Thulium-Doped FiberSaturable Absorber. Chinese Physics Letters. 31(12): 23-30.

Boguslawski J., Sotor J., Sobon G., Kozinski R., Librant K., Aksienionek M., Lipinska L., and Abramski K. M. 2015. Graphene Oxide Paper As A Saturable Absorber For Er- And Tm-Doped Fiber Lasers. Photonics Research. 3(4): 119-124.

Azooz S., Harun S. W., Ahmad H., Halder A., Paul M. C. Das S., and Bhadra S. K.2015. A Q-Switched Fibre Laser Operating In The 2 µm Region Based On Nonlinear Polarization Rotation Technique. Ukrainian Journal of Physical Optics. 16(1): 32-37.

He Y., Li Z., Luo H., Wang L., Han L., and Li 2015. J. Cr2+: ZnSe crystal based high power passively Q-switched Tm-Doped Fiber Laser. Optics Communications. 336(0): 84-87.

Sobon G., Sotor J., Jagiello, J. Kozinski, R.Librant, K. Zdrojek, M. Lipinska, L. and Abramski K. M. 2012 .Linearly Polarized, Q-Switched Er-Doped Fiber Laser Based On Reduced Graphene Oxide Saturable Absorber. Applied Physics Letters. 101(24): 241106.

Wang Z.T., Zou Y. H., Chen Y., Wu M., Zhao C. J., Zhang H., and Wen S. C.2013. Graphene Sheet Stacks For Q -Switching Operation Of An Erbium-Doped Fiber Laser. Laser Physics Letters. 10(7): 075102.

Luo Z.Q., et al., 2014. 1-, 1.5-, and 2-mu m Fiber Lasers Q-Switched by a Broadband Few-Layer MoS2 Saturable Absorber. Journal of Lightwave Technology. 32(24): 4077-4084.

Tang Y., Yu X., Li X., Yan Z., and Wang Q. J.2014. High-Power Thulium Fiber Laser Q Switched With Single-Layer Graphene. Optics Letters. 39(3): 614-617.

Schmidt A., Rivier S., Cho W. B., Yim J. H, Choi S. Y., Lee S., Rotermund F., Rytz D., Steinmeyer G., Petrov V., and Griebner U.2009. Sub-100 Fs Single-Walled Carbon Nanotube Saturable Absorber Mode-Locked Yb-Laser Operation Near 1.5μm. Optics Express. 17(22): 20109-20116.

Ahmed M.H.M., Salleh Z. S., Ali, N. M. Harun S. W., and Arof H.2014. Q-Switched Erbium Doped Fiber Laser Using Single-Walled Carbon Nanotubes Embedded In Polyethylene Oxide Film Saturable Absorber. Microwave and Optical Technology Letters. 56(11): 2734-2737.

Ahmad M.T., Latiff, A. A. Zakaria Z., Zen, D. I. M., Saidin N., Haris H., Ahmad H., and Harun S. W.2014. Q-Switched Thulium-Doped Fiber Laser Operating At 1920 Nm Region With Multiwalled Carbon Nanotubes Embedded In Polyvinyl Alcohol. Microwave and Optical Technology Letters. 56(12): 2817-2819.

Ahmed M. H. M., Ali N. M., Salleh Z. S., Rahman A. A., Harun S. W., Manaf M., and Arof H. 2015Q-Switched Erbium Doped Fiber Laser Based On Single And Multiple Walled Carbon Nanotubes Embedded In Polyethylene Oxide Film As Saturable Absorber. Optics & Laser Technology. 65(0): 25-28

Saidin N., Zen D. I. M., Ahmad F., Damanhuri S. S. A., Ahmad H., Dimyati K., and Harun S. W. 2014. Q-Switched Thulium-Doped Fibre Laser Operating At 1900 Nm Using Multi-Layered Graphene Based Saturable Absorber. Optoelectronics, IET. 8(4): 155-160.

Wang F., Torrisi F., Jiang Z., Popa D., Hasan T., Sun Z., Cho W., and errari A. C.2012. Graphene Passively Q-Switched Two-Micron Fiber Lasers. Inconference On Lasers And Electro-Optics 2012. San Jose, California: Optical Society of America.

Lu B., Chen H., Jiang M., Chen X., Ren Z., and Bai J. 2013. Graphene-Based Passive Q-Switching For A 2 Îœm Thulium-Doped Fiber Laser. Laser Physics. 23(4): 44-48.

Bai D.B., Li W. X., Yang K. W., Shen X. L., Chen X. L., and Zheng H. P. 2014. Nonlinear Polarization Rotation-Induced Pulse Shaping In A Stretched-Pulse Ytterbium-Doped Fiber Laser. Chinese Physics B. 23(10): 10-17.

Downloads

Published

2016-05-26

How to Cite

GENERATION OF Q-SWITCHED THULIUM-DOPED FIBER LASER (TDFL) USING DIFFERENTSATURABLE ABSORBERS. (2016). Jurnal Teknologi, 78(5-9). https://doi.org/10.11113/jt.v78.8810