AROMATIC BIOMARKER FROM BROWN COAL, SANGATTA COALFIELD, EAST BORNEO OF MIDDLE MIOCENE TO LATE MIOCENE AGE

Authors

  • Yulfi Zetra Laboratory of Molecular Geochemistry, Chemistry Departement, Institut Teknologi Sepuluh Nopember, Kampus ITS Keputih, Surabaya 60111, Indonesia
  • Imam B. Sosrowidjojo Research Institute of Petroleum Exploration and Development “LEMIGAS”, Jakarta, Indonesia
  • R. Y. Perry Burhan Laboratory of Molecular Geochemistry, Chemistry Departement, Institut Teknologi Sepuluh Nopember, Kampus ITS Keputih, Surabaya 60111, Indonesia

DOI:

https://doi.org/10.11113/jt.v78.8822

Keywords:

Brown coal, Inul area, Sangatta coalfield, pentacyclic aromatic triterpenoids, GCMS

Abstract

A section of the Sangatta coalfield in the Balikpapan formation located in Kutai Basin, East Borneo, Indonesia, is the Inul area, located North of Pinang Dome. This section of the coalmine has coals with low calories (ca. 4379 cal/g), which is why they cannot be used optimally yet. The reasons of using low calorie coals are besides from being used as a mixing ingredient for the blending process of high calorie coals, they are also used to diversify the coals through the process of coal liquefaction (coal to liquid). In order for the coal liquefaction to be processed correctly, there needs to be a study on the geochemistry organics through coal biomarker analysis, particularly on the hydrocarbon aromatic fractions, so that the origins of the coal organic compounds could be known. Biomarker analysis on the aromatic hydrocarbon fraction shows the existence of naphthalene compound groups with sesquiterpenoids skeleton, phenanthrene with diterpenoids, sesterpenoids skeleton and triterpenoids aromatic pentacyclic. The existence of cadalene compound, triterpene pentacyclic monoaromatic, -triaromatic, -tetraaromatic, -pentaaromatic and triterpenoid C-ring cleaved hydrocarbon with oleanane, ursane and lupane skeletons indicated that the source of coal organic compounds were derived from b-amyrin which were produced by Angiospermae plants. The coal biomarkers distribution, particularly the high abundance of triterpenoid pentacyclic triaromatic compound, confirmed the low maturity of the coals which is predicted to profit from the process of liquefaction due to the high contents of their aromatic fractions.

References

Boedoyo, M. S., Wahid, L. O. M. A., Fitriana, I., Niode, N., Puspita, R. E., Suarna, E., Wijaya, P. T. 2014. Outlook Energi Indonesia 2014: Pengembangan Energi dalam mendukung program substitusi. Pusat Teknologi Pengembangan Sumberdaya Energi, Badan Pengkajian dan Penerapan Teknologi (BPPT) Jakarta. 70.

Chaffee, A. L., Hoover, D. S., Johns, R. B., Schweighardt, F. K. 1986. Biological Markers Extractable From Coal. In: John, R.B (Ed.). Biological Markers In The Sedimentary Record. Elsevier, Amsterdam. 311-345.

Wang, T. G., Simoneit, B. R. T. 1991. Organic Geochemistry And Coal Petrology Of Tertiary Brown Coal In The Zhoujing Mine, Baise Basin, South China. 3. Characteristics Of Polycyclic Aromatic Hydrocarbons. Fuel. 70: 819-829.

Del Rio, J. C., Gonzales-Vila, F. J., Martin, F. 1991. Variation In The Content And Distribution Of Biomarkers In Two Closely Situated Peat And Lignite Deposits. Organic Geochemistry. 18: 67-78.

Tuo, J., Philp, R. P. 2005. Saturated And Aromatic Diterpenoids And Triterpenoids In Eocene Coals And Mudstones From China. Applied Geochemistry. 20: 367-381.

Romero-Sarmiento, M. F., Ribolleau, A., Vecoli, M., Versteegh, G. J. M., 2011. Aliphatic And Aromatic Biomarkers From Gondwanan Sediments Of Late Ordovician To Early Devonian Age: An Early Terrestrialization Approach. Organic Geochemistry. 42: 605-617.

Regnery, J., Puttmann, W., Koutsodendris, A., Mulz, A., Pross, J. 2013. Comparison Of The Paleoclimatic Significance Of Higher Land Plant Biomarker Concentration And Pollen Data: A Case Study Of Lake Sediments From The Holsteinian Interglacial. Organic Geochemistry. 61: 73-84.

Widodo S., Bechtel A., Anggayana K. and Püttmann W. 2009. Reconstruction Of Floral Changes During Deposition Of The Miocene Embalut Coal From Kutai Basin, Mahakam Delta, East Kalimantan, Indonesia By Use Of Aromatic Hydrocarbon Composition And Stable Carbon Isotope Ratios Of Organic Matter. Organic Geochemistry. 40: 206-218.

Fabiańska, M. J., Cmiel, R. S., Kennan, M. S. 2013. Biomarkers And Aromatic Hydrocarbons In Bituminous Coals Of Upper Silecian Coal Basin : Example From 405 Coal Seam Of The Zaleskie Beds (Poland). International Journal of Coal Geology. 107: 96-111.

Killops, S. D., Killops, V. J. 2005. An Introduction To Organik Geochemistry. 2nd edition. Blackwell Publishing Ltd, USA.

Peters, K. E., Moldowan, J. M. 1993. The Biomarker Guide, Interpretting Molecular Fossils in Petroleum and Ancient Sediments. Prentice Halls, Englewood Cliffs, New Jersey. 363.

van Aarssen, B. G. K., Hessels, J. K. C., Abbink, O. A., de Leeuw, J. W. 1992. The Occurence Of Polycyclic Sesqui-, Tri-, And Oligoterpenoids Derived From A Resinous Polymeric Cadinene In Crude Oils From Southeast Asia. Geochimica et Cosmochimica Acta. 56: 1231-1246.

Amijaya, H., Schwarzbauer, J. and Littke, R., 2006. Organic Geochemistry Of The Lower Suban Coal Seam, South Sumatra Basin, Indonesia: Palaeoecological And Thermal Metamorphism Implications. Organic Geochemistry. 37: 261-279.

Prasad, M. 1993. Siwalik (Middle Miocene) Woods From The Kalagarh Area In The Himalayan Foot Hills And Their Bearing On Paleoclimate And Phytogeography. Review of Paleobotany and Palynology. 76: 49-82.

Appanah, S., Turnbull, G. M. 1998. A Review Of Dipterocarps Taxonomy Ecology And Silviculture. Center For International Forestry Research, Bogor, Indonesia. 223.

Noble, R. A., Wu, C. H., Atkinson, C. D. 1991. Petroleum Generation And Migration From Talang Akar Coals And Shales Offshore N.W. Java, Indonesia. Organic Geochemistry. 17: 363-374.

Chattopadhyay, A., Duta, S. 2014. Higher Plant Biomarker Signatures Of Early Eocene Sediments Of North Eastern India. Marine and Petroleum Geology. 57: 51-67.

Otto, A., Simoneit, B. R. T., Rember, W. C. 2005. Conifer And Angiosperm Biomarker In Clay Sediments And Fossil From The Miocene Clarkia Formation, Idaho, USA. Organic Geochemistry. 36: 907-922.

Demchuck, T., Moore, T. A. 1993. Palynofloral And Organic Characteristic Of A Miocene Bog-Forest, Kalimantan, Indonesia. Organic Geochemistry. 20: 119-134.

van Aarssen, B. G. K., Alexander, R., Kagi, R. 2000. Higher Plant Biomarkers Reflect Paleovegetation Changes During Jurassic Times. Geochimica et Cosmochimica Acta. 64: 1417-1424.

Jiang, C., Alexander, R., Kagi, R.I., Murray, A. P. 2000. Origine Of Perylene In Ancient Sediments And Its Geological Significance. Organic Geochemistry. 31: 1545-1559.

Zivotic, D., Bechtel, A., Sachsenhofer, R., Gratzer, R., Radic, D., Obradovic, M., Stojanovic, K. 2014. Petrological And Organic Geochemical Properties Of Lignite From The Kolubara And Kostolak Basin Serbia: Implication On Grindability Index. International Journal of Coal Geology. 31: 344-362.

Stout, S. A. 1992. Aliphatic And Aromatic Triterpenoid Hydrocarbons In A Tertiary Angiospermous Lignite. Organic Geochemistry. 18: 51-56.

Dev, S. 1989. Terpenoids. In: Rowe, J. W. (Ed.). Natural Products Of Woody Plants I. Springer, Berlin. 691-807.

Strobl, S. A. I., Sachsenhofer, R. F., Bechtel, A., Gratzer, R., Gross, D., Bokhari, S. N. A., Liu, R., Liu, Z., Meng, Q., Sun, P., 2014. Depositional environment of oil shale within the Eocene Jijuntun Formation in the Fushun Basin (NE China). Marine and Petroleum Geology. 56: 166-183.

De Las Heras, F. X., Grimalt, G. O., Albaiges, J. 1991. Novel C-Ring Cleaved Triterpenoid-Derived Aromatic Hydrocarbons In Tertiary Brown Coals. Geochimica et Cosmochimica Acta. 55: 3379-3385.

Chaffee, A. L., Fookes, C. J. R. 1988. Polycyclic Aromatic Hydrocarbons In Australian Coals-III. Structural Elucidation By Proton Nuclear Magnetic Resonance Spectroscopy. Organic Geochemistry. 12: 261-271.

Simoneit, B. R. T. Grimalt, J. O., Wang, T. G., Cox, R. E., Hatcher, P. G., Nissenbaum, A. 1986. Cyclic Terpenoids Of Contemporary Resinous Plant Detritus And Of Fossil Woods, Ambers And Coal. Organic Geochemistry. 10: 877-889.

Stefanova, M., Markova, K., Marinov, S., Simoneit, B. R. T., 2005. Molecular Indicators For Coal-Forming Vegetation Of The Miocene Chukuruvo Lignite, Bulgaria. Fuel. 84: 1830-1838.

Loureiro, M. R. B., Cardoso, J. N. 1990. Aromatic Hydrocarbons In The Paraibab Valley Oil Shale. Organic Geochemistry. 15: 351-359.

Dehmer, J. 1993. Petrology And Organic Geochemistry Of Peat Samples From A Raised Bog In Kalimantan (Borneo). Organic Geochemistry. 20: 349-362.

Nakamura, H., Swada, R., Takahashi, M. 2010. Aromatic Terpenoid Biomarkers In The Cretaceous And Paleogene Angiosperm Fossils From Japan. Organic Geochemistry. 41: 975-980.

Villar, H. J., Puttmann, W., Wolf, M. 1988. Organic Geochemistry And Petrography Of Tertiary Coals And Carbonaceous Shales From Argentina. Organic Geochemistry. 13: 1011-1021.

Chaffee, A. L., Strachan, M. G., Johns, R. B. 1984. Polycyclic Aromatic Hydrocarbons In Australian Coals. II. Novel Tetracyclic Compounds From Victorian Brown Coal. Geochimica et Cosmochimica Acta. 48: 2037-2043.

Laflamme, R. E., Hites, R. A. 1979. Tetra- And Pentacyclic, Naturally-Occuring, Aromatic Hydrocarbons In Recent Sediments. Geochimica and Cosmochimica Acta. 43: 1687-1691.

Wakeham, S. G., Schaffner, C., Giger, W. 1980. Polycyclic Aromatic Hydrocarbons In Recent Lake Sediments. II. Compunds Derived From Biogenic Precursors During Early Diagenesis. Geochimica et Cosmochimica Acta. 44: 415-429.

Downloads

Published

2016-05-30

Issue

Section

Science and Engineering

How to Cite

AROMATIC BIOMARKER FROM BROWN COAL, SANGATTA COALFIELD, EAST BORNEO OF MIDDLE MIOCENE TO LATE MIOCENE AGE. (2016). Jurnal Teknologi (Sciences & Engineering), 78(6). https://doi.org/10.11113/jt.v78.8822