PENILAIAN KUALITI IMEJ DIGITAL BERDASARKAN KAEDAH CIRI-CIRI SISTEM PENGLIHATAN MANUSIA DAN PRINSIP STRUKTUR IMEJ

Authors

  • Bahbibi Rahmatullah Jabatan Komputeran, Fakulti Seni, Komputeran dan Industri Kreatif, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Malaysia
  • Siti Tasnim Mahamud Jabatan Komputeran, Fakulti Seni, Komputeran dan Industri Kreatif, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Malaysia

DOI:

https://doi.org/10.11113/jt.v78.8840

Keywords:

Digital image quality, objective evaluation, human visual system, principle of image structure

Abstract

Tremendous advances of information technology provide a large role for digital images for delivering information quickly and accurately. However, digital images are exposed to distortions and imperfect quality during acquisition, compression, transmission, processing and reproduction. Therefore, the development of effectively image quality assessment (IQA) is crucial in order to identify and measure the distortion in image quality. Perception by human observers (manually) as the ultimate receiver of the visual information contained in an image and most reliable to assess the quality of image. However, manual subjective assessment method is considered costly and time consuming. This lead to the development of proposed automatic method to measure image quality as accurately as the manual method. The goal of objective image quality assessment is to develop a computational model that can accurately and automatically predict the perceptual image quality. An ideal objective IQA method should be able to imitate the quality predictions of an average human observer. Full-reference image quality assessment is a method where image with perfect quality provided as a reference image for guiding the IQA system. This paper presents the study and comparison between two full-reference method that frequently used in IQA system that is method based on the properties of human visual system (HVS) and method based on principle of image structure. Both of this method is proven can be used to measure digital images quality accurately and depends on distortion types that occurred on measured images.

References

Wang, Z., dan Bovik A.C. 2006. Modern Image Quality Assessment Synthesis Lectures on Image, Video, and Multimedia Processing. 2(1): 1-156.

He, L., Gao, F., Hou, W., dan Hao, L. 2014. Objective Image Quality Assessment: A Survey. International Journal of Computer Mathematics. 91(11): 2374-2388.

Larson, E. C., dan Chandler, D. M. 2010. Most Apparent Distortion: Full-reference Image Quality Assessment and The Role of Strategy. Journal of Electronic Imaging. 19(1): 011006-011006.

Wang, Z., dan Bovik, A. C. 2002. A Universal Image Quality Index. Signal Processing Letters, IEEE. 9(3): 81-84..

Gao, X., Wang, T., dan Li, J. 2005. A Content-based Image Quality Metric. Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. 231-240. Springer Berlin Heidelberg.

Ponomarenko, N., Battisti, F., Egiazarian, K., Astola, J., dan Lukin, V. 2009. Metrics Performance Comparison for Color Image Database. Fourth International Workshop on Video Processing and Quality Metrics for Consumer Electronics.

Ilushkina, N., dan Avdeev, O. Image Quality Measures for Wavelet-Based Compression Algorithm. [Atas talian]. Didapati di: http://ticsp.cs.tut.fi/images/e/e0/Cr1036.pdf? [Diakses: 02-Mar-2015].

Egiazarian, K., Astola, J., Ponomarenko, N., Lukin, V., Battisti, F., dan Carli, M. 2006. New Full-reference Quality Metrics Based on HVS. CD-ROM Proceedings of the Second International Workshop on Video Processing and Quality Metrics, Scottsdale, USA. 4.

Lukin, V. V., Ponomarenko, N. N., Krivenko, S. S., Egiazarian, K. O., dan Astola, J. T. 2008. Image Filter Effectiveness Characterization based on HVS. Electronic Imaging 2008. 68140Z-68140Z. International Society for Optics and Photonics.

Ponomarenko, N., Ieremeiev, O., Lukin, V., Egiazarian, K., dan Carli, M. 2011. Modified Image Visual Quality Metrics for Contrast Change and Mean Shift Accounting. 11th International Conference the Experience of Designing and Application of CAD Systems in Microelectronics (CADSM), Polyana-Svalyava, Ukraine. 305-311.

Chetouani, A., Beghdadi, A., dan Deriche, M. 2010. Image Distortion Analysis and Classification Scheme Using a Neural Approach. Visual Information Processing (EUVIP), 2010 2nd European Workshop. 183-186. IEEE.

Tong, Y., Konik, H., Cheikh, F., dan Tremeau, A. 2010. Full Reference Image Quality Assessment based on Saliency Map Analysis. Journal of Imaging Science and Technology. 54(3): 30503-1.

Ponomarenko, N., Krivenko, S., Egiazarian, K., Astola, J., dan Lukin, V. 2014. Weighted MSE based Metrics for Characterization of Visual Quality of Image Denoising Methods. Proceedings of the 8th International Workshop on Video Processing and Quality Metrics for Consumer Electronics (VPQM'14).

Chandler, D. M. 2013. Seven Challenges in Image Quality Assessment: Past, Present, and Future Research. ISRN Signal Processing.

Zarić, A., Tatalović, N., Brajković, N., Hlevnjak, H., LonÄarić, M., Dumić, E., dan Grgić, S. 2012. VCL@FER Image Quality Assessment Database. AUTOMATIKA: Äasopis za automatiku, mjerenje, elektroniku, raÄunarstvo i komunikacije. 53(4): 344-354.

Singh, P., dan Chandler, D. M. 2013. F-MAD: A Feature-based Extension of the Most Apparent Distortion Algorithm for Image Quality Assessment. IS&T/SPIE Electronic Imaging. 86530I-86530I. International Society for Optics and Photonics.

Wang, Z., Bovik, A. C., Sheikh, H. R., dan Simoncelli, E. P. 2004. Image Quality Assessment: From Error Visibility to Structural Similarity. Image Processing, IEEE Transactions. 13(4): 600-612.

Wang, Z., Simoncelli, E. P., dan Bovik, A. C. 2003. Multi-scale Structural Similarity for Image Quality Assessment. Signals, Systems and Computers, 2004. Conference Record of the Thirty-Seventh Asilomar Conference. 2: 1398-1402. IEEE.

Ponomarenko, N., Lukin, V., Zelensky, A., Egiazarian, K., Carli, M., dan Battisti, F. 2009. TID2008 - A Database for Evaluation of Full-reference Visual Quality Assessment Metrics. Advances of Modern Radioelectronics. 10(4): 30-45.

Sheikh, H. R., Sabir, M. F., dan Bovik, A. C. 2006. A Statistical Evaluation of Recent Full Reference Image Quality Assessment Algorithms. Image Processing, IEEE Transactions. 15(11): 3440-3451.

Čadík, M., Herzog, R., Mantiuk, R., Myszkowski, K., dan Seidel, H. P. 2012. New Measurements Reveal Weaknesses of Image Quality Metrics in Evaluating Graphics Artifacts. ACM Transactions on Graphics (TOG). 31(6): 147.

Chen, M. J., dan Bovik, A. C. 2011. Fast Structural Similarity Index Algorithm. Journal of Real-Time Image Processing. 6(4): 281-287.

Li, C., dan Bovik, A. C. 2009. Three-component Weighted Structural Similarity Index. IS&T/SPIE Electronic Imaging. 72420Q-72420Q. International Society for Optics and Photonics.

Wang, Z., dan Li, Q. 2011. Information Content Weighting for Perceptual Image Quality Assessment. Image Processing, IEEE Transactions. 20(5): 1185-1198.

Pappas, T. N., Safranek, R. J., dan Chen, J. 2000. Perceptual Criteria for Image Quality Evaluation. Handbook Of Image And Video Processing. 669-684.

Larson, E. C., dan Chandler, D. M. 2008. Unveiling Relationships Between Regions of Interest and Image Fidelity Metrics. Electronic Imaging 2008. 68222A-68222A. International Society for Optics and Photonics.

Najemnik, J., dan Geisler, W. S. 2005. Optimal Eye Movement Strategies in Visual Search. Nature. 434(7031): 387-391.

Portilla, J., Strela, V., Wainwright, M. J., dan Simoncelli, E. P. 2003. Image Denoising using Scale Mixtures of Gaussians in the Wavelet Domain. Image Processing, IEEE Transactions. 2(11): 1338-1351.

Soundararajan, R., dan Bovik, A. C. 2013. Survey of Information Theory in Visual Quality Assessment. Signal, Image and Video Processing. 7(3): 391-401.

Liu, A., Lin, W., dan Narwaria, M. 2012. Image Quality Assessment based on Gradient Similarity. Image Processing, IEEE Transactions. 21(4): 1500-1512.

Dumic, E., Grgic, S., dan Grgic, M. 2014. IQM2: New Image Quality Measure based on Steerable Pyramid Wavelet Transform and Structural Similarity Index. Signal, Image and Video Processing. 8(6): 1159-1168.

Downloads

Published

2016-05-30

How to Cite

PENILAIAN KUALITI IMEJ DIGITAL BERDASARKAN KAEDAH CIRI-CIRI SISTEM PENGLIHATAN MANUSIA DAN PRINSIP STRUKTUR IMEJ. (2016). Jurnal Teknologi (Sciences & Engineering), 78(5-10). https://doi.org/10.11113/jt.v78.8840