DEVELOPMENT OF A FLICKING SYSTEM FOR PRODUCING CALCIUM ALGINATE MICROBEADS

Authors

  • Soon Chuan Wong Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia
  • Chin Fhong Soon Biosensor and Bioengineering Laboratory, MiNT-SRC Research Center, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia
  • Wai Yean Leong Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia
  • Kian Sek Tee Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v78.8909

Keywords:

Flicking, calcium alginate, microbeads, pulse width modulation, motor

Abstract

Microencapsulation of cells for various applications is attracting increasing interest. A variety of microencapsulation technology has been developed to produce cells encapsulation. However, previous microencapsulation systems were associated with complex design, high voltage supply, requirements of post cleaning process and large volume of reagents. In this paper, we proposed the development of a flicking device for generating a 3D cell model in calcium alginate microbeads that has potential for pharmacological test and tissue implants. A flicking system based on a flicking device and a syringe pump has been developed for generation of calcium alginate microbeads.  The size of the microbeads produced using this system can be controlled by changing the flow rate (5 to 15 µl/min) of the syringe pump and fixing the motor rotation speed of the flicking device at 90 rpm. The calcium alginate microbeads produced using the flicking device were shown to be size controllable (270 to 430 µm) and suitable for microencapsulation.

References

Singh M. N., Hemant K. S., Ram M., and Shivakumar H. G.. 2010. Microencapsulation: A Promising Technique For Controlled Drug Delivery. Res Pharm Sci. 5(2): 65-77.

Kang, A. Park, J. Ju,J. Jeong,G. S. and Lee S. H.. 2014. Cell Encapsulation Via Microtechnologies. Biomaterials. 35(9): 2651-63.

Lee K. Y. and Mooney D. J.. 2001. Hydrogels For Tissue Engineering. Chem Rev. 101(7): 1869-79.

Jinchen Sun H. T. 2013. Review Alginate-Based Biomaterials for Regenerative Medicine Applications. Materials. 6(4): 1285-1309.

Ghidoni,I. Chlapanidas, T. Bucco,M. Crovato,F. Marazzi, Vigo M. D., et al. 2008. Alginate Cell Encapsulation: New Advances In Reproduction And Cartilage Regenerative Medicine. Cytotechnology. 58(1): 49-56.

Wang,L. Shelton,R. M. Cooper, P. R. Lawson,M. Triffitt,J. T. and Barralet J. E.. 2003. Evaluation Of Sodium Alginate For Bone Marrow Cell Tissue Engineering. Biomaterials. 24(20): 3475-81.

Orive,G. Hernandez,R. M. Rodriguez Gascon,A. Calafiore,R. Chang,T. M. Vos, P. De Et Al. 2004. History, Challenges And Perspectives Of Cell Microencapsulation. Trends Biotechnol. 22(2): 87-92.

Martinez,C. J. Kim, J. W. Ye,C Ortiz,. I. A. Rowat,C. Marquez,M. et al. 2012. A Microfluidic Approach To Encapsulate Living Cells In Uniform Alginate Hydrogel Microparticles. Macromol Biosci. 12(7): 946-51.

Raymond,M. C. Neufeld,R. J. and Poncelet.D. 2004. Encapsulation Of Brewers Yeast In Chitosan Coated Carrageenan Microspheres By Emulsification/Thermal Gelation. Artif Cells Blood Substit Immobil Biotechnol. 32(2): 275-91.

Rama Dubey,T. C. S. Bhasker Rao.K.U. January 2009. Microencapsulation Technology and Applications. Defence Science Journal. 59(1): 82-95.

Xie J. and Wang. C. H. 2007. Electrospray In The Dripping Mode For Cell Microencapsulation. J Colloid Interface Sci. 312(2): 247-55.

Dorota Lewinska,J. Marek Kozuchowski,B. Andrzej Kinasiewicz, Andrzej Werynski. 2008. Electrostatic Microencapsulation of Living Cells. Biocybernetics and Biomedical Engineering. 28(2): 69–84.

Sugiura,S. Oda,T. Aoyagi, Y. Matsuo,R. Enomoto,T. Matsumoto,K. et al. 2007. Microfabricated Airflow Nozzle For Microencapsulation Of Living Cells Into 150 Micrometer Microcapsules. Biomed Microdevices. 9(1): 91-9.

Chicheportiche D. and Reach G.. 1988. In Vitro Kinetics Of Insulin Release By Microencapsulated Rat Islets: Effect Of The Size Of The Microcapsules. Diabetologia. 31(1): 54-7.

chrezenmeir,J. Gero,S L. Laue, C. Kirchgessner,J. Muller, A. A. Huls, et al. 1992. The Role Of Oxygen Supply In Islet Transplantation. Transplant Proc. 24(6): 2925-9.

Sugiura,S. Oda,T. Izumida,Y. Aoyagi Y., Satake,M. Ochiai,A. et al. 2005. Size Control Of Calcium Alginate Beads Containing Living Cells Using Micro-Nozzle Array. Biomaterials. 26(16): 3327-31.

Haeberle,S. Naegele,L. Burger,R. von Stetten,F. Zengerle, R. and Ducree J.. 2008. Alginate Bead Fabrication And Encapsulation Of Living Cells Under Centrifugally Induced Artificial Gravity Conditions. J Microencapsul. 25(4): 267-74

Downloads

Published

2016-06-05

How to Cite

DEVELOPMENT OF A FLICKING SYSTEM FOR PRODUCING CALCIUM ALGINATE MICROBEADS. (2016). Jurnal Teknologi (Sciences & Engineering), 78(6-2). https://doi.org/10.11113/jt.v78.8909