THE AUTOMATED SEGMENTATION TECHNIQUES OF T2-WEIGHTED MRI IMAGES USING K-MEANS CLUSTERING AND OTSU-BASED THRESHOLDING METHOD

Authors

  • Iza Sazanita Isa Faculty of Electrical Engineering, Universiti Teknologi MARA, Penang Campus, 13500 Permatang Pauh, Pulau Pinang, Malaysia
  • Siti Noraini Sulaiman Faculty of Electrical Engineering, Universiti Teknologi MARA, Penang Campus, 13500 Permatang Pauh, Pulau Pinang, Malaysia
  • Muzaimi Mustapha School of Medical Sciences, Universiti Sains Malaysia, Health Campus 16150 Kubang Kerian, Kelantan, Malaysia

DOI:

https://doi.org/10.11113/jt.v78.8973

Keywords:

White matter lesions, Automatic segmentation, K-means clustering, Multi threshold, grayscale intensity distribution

Abstract

The k-means clustering and Otsu-based thresholding of MRI images segmentation are widely used to cluster the lesions in human brain. The main objective of this paper is to employ both algorithms concept to obtain the optimum value of clusters center and threshold levels for a better segmentation process. Both segmentation approaches were used to partition the images into separate classes which are composed of pixels that have similar pre-defined feature values. The evaluation of both segmentation techniques were measured via qualitative and quantitative analysis. From the analysis of the results, it is justified that the proposed approaches are able to efficiently illustrate good segmentation results. The K-means algorithm is also successfully preserved important features of the MRI segmented images as the larger number of clustering reveals bigger grayscale intensity distribution on delineation marks of the MS lesions.

References

Caligiuri, M. E., Perrotta, P., Augimeri, A., Rocca, F., Quattrone, A. and Cherubini, A. 2015. Automatic Detection of White Matter Hyperintensities in Healthy Aging and Pathology Using Magnetic Resonance Imaging: A Review. Neuroinformatics. 13(3): 261-76.

Shamsi, H. and Seyedarabi, H. 2012. A Modified Fuzzy C-Means Clustering with Spatial Information for Image Segmentation. Int. J. Comput. Theory Eng. 4(5): 762-766.

Jumb, V., Sohani, M., and Shrivas, A. 2014. Color Image Segmentation Using K-Means Clustering and Otsu’s Adaptive Thresholding. Int. J. Innov. Technol. Explor. Eng. 3(9): 72-76.

Shrivastava, K., Gupta, N. and Sharma, N. 2014. Medical Image Segmentation using Modified K Means Clustering. Int. J. Comput. Appl. 103(16): 12-16.

Cannon, R. L., Dave, J. V., and Bezdek, J. C. 1986. Efficient Implementation of the Fuzzy c-Means Clustering Algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 8(2): 248-255.

Sulaiman, S. N. and Mat Isa, N. A. 2010. Adaptive Fuzzy-K-Means Clustering Algorithm For Image Segmentation. IEEE Trans. Consum. Electron. 56: 2661-2668.

Allam Zanaty, E. 2013. An Adaptive Fuzzy C-Means Algorithm for Improving MRI Segmentation. Open J. Med. Imaging. 03: 125-135.

Gopal, N. N. and Karnan, M. 2010. Diagnose Brain Tumor Through MRI Using Image Processing Clustering Algorithms Such As Fuzzy C Means Along With Intelligent Optimization Techniques. 2010 IEEE Int. Conf. Comput. Intell. Comput. Res. 1-4.

Ashidi, N., Isa, M., a Salamah, S., and Ngah, U. K. 2009. Adaptive Fuzzy Moving K-means Clustering Algorithm for Image Segmentation. IEEE Trans. Consum. Electron. 55: 2145-2153.

Ong, K. H., Ramachandram, D., Mandava, R., and Shuaib, I. L. 2012. Automatic White Matter Lesion Segmentation Using An Adaptive Outlier Detection Method. Magn. Reson. Imaging. 30(6): 807-23.

Liu D. and Yu J. 2009. Otsu method and K-means. Proc. - 2009 9th Int. Conf. Hybrid Intell. Syst. HIS 2009. 1(2): 344–349.

Christos C. S. P., Loizou P., Efthyvoulos C. Kyriacou, Ioannis Seimenis, Marios Pantziaris, Styliani Petroudi, Minas Karaolis. 2013. Brain white matter lesion classification in multiple sclerosis subjects for the prognosis of future disability. 3–10.

Otsu N. 1979. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man, Cybernatics. 9(1): 62–66.

MacQueen J. 1967. Some methods for classification and analysis of multivariate observations. Proc. fifth Berkeley Symp. 1(14): 281–297.

Jose A., Ravi S. and Sambath M. 2014. Brain Tumor Segmentation Using K-Means Clustering And Fuzzy C-Means Algorithms And Its Area Calculation. Int. J. Innov. Res. Comput. Commun. Eng. 2(3): 3496–3501.

Senthilkumaran N. and Thimmiaraja J. 2014. Histogram Equalization for Image Enhancement Using MRI Brain Images. in 2014 World Congress on Computing and Communication Technologies. 80–83.

Luizou C. P., Pattichis C. S., Christodouluo C. I., Istepanian R. S. H., Pantziaris M., and Nicolaides A. 2005. Comparative Evaluation of Despeckle Filtering In Ultrasound Imaging of the Carotid Artery. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 52(10): 1653–1669.

Abdul-Nasir A. S., Mashor M. Y., Halim N. H. A., and Mohamed Z. 2014. The cascaded moving k-means and fuzzy c-means clustering algorithms for unsupervised segmentation of malaria images. International conference on Mathematics, Engineering and Industrial Applications . 1–11.

Downloads

Published

2016-06-12

How to Cite

THE AUTOMATED SEGMENTATION TECHNIQUES OF T2-WEIGHTED MRI IMAGES USING K-MEANS CLUSTERING AND OTSU-BASED THRESHOLDING METHOD. (2016). Jurnal Teknologi, 78(6-4). https://doi.org/10.11113/jt.v78.8973