FLUORESCENT LIGHT (FL), RED LED AND BLUE LED SPECTRUMS EFFECTS ON IN VITRO SHOOTS MULTIPLICATION

Authors

  • Nurul Syahirah Azmi Razak School of Engineering and Advanced Technology, Universiti Teknologi Malaysia
  • Robiah Ahmad Razak School of Engineering and Advanced Technology, Universiti Teknologi Malaysia
  • Rusli Ibrahim Malaysia Nuclear Agency, Bangi, 43000 Kajang Selangor, Malaysia

DOI:

https://doi.org/10.11113/jt.v78.9032

Keywords:

Tissue culture, rose, LED, fluorescent light, red and blue LED

Abstract

Tissue culture in ornamental plants is one of the relevant factors that beat production of vegetables and fruit production worldwide. It has been recognized as an effective tool to enhance large scale of plant multiplication. However, the conventional lighting system may contain unnecessary wavelength that are low quality to promote growth. In this study, experiment was conducted by using Light Emitting Diodes (LED) as an alternative source of lighting. Red and blue LEDs along with fluorescent light (FL) were applied to determine the best source of light in multiplication of rose. Under the same media regimes which are MS media basal and BAP shoot hormone, blue LED had shown more shoots and leaves. 

References

Tobyn, G., Denham, A., & Whitelegg, M. 2010. The Western Herbal Tradition: 2000 Years Of Medicinal Plant Knowledge. Elsevier Health Sciences.

Almusaed, A. 2010. Biophilic and Bioclimatic Architecture: Analytical Therapy for the Next Generation of Passive Sustainable Architecture. Springer Science & Business Media.

Zeng, S., Liang, S., Zhang, Y. Y., Wu, K. L., da Silva, J. T., & Duan, J. 2013. In Vitro Flowering Red Miniature Rose. Biologia plantarum. 57(3): 401-409.

Rout, G. R., Mohapatra, A., & Jain, S. M. 2006. Tissue Culture of Ornamental Pot Plant: A Critical Review on Present Scenario and Future Prospects. Biotechnology Advances. 24(6): 531-560.

Jabbarzadeh, Z., & Khosh-Khui, M. 2005. Factors Affecting Tissue Culture of Damask Rose (Rosa Damascena Mill.). Scientia Horticulturae. 105(4): 475-482

Abdolmohammadi, M., Kermani, M. J., Zakizadeh, H., & Hamidoghli, Y. 2014. In Vitro Embryo Germination and Interploidy Hybridization of Rose (Rosa Sp). Euphytica. 198(2): 255-264.

Walters, R. G. 2005. Towards An Understanding of Photosynthetic Acclimation. Journal of Experimental Botany. 56(411): 435-447.

Jiao, Y., Lau, O. S., & Deng, X. W. 2007. Light-Regulated Transcriptional Networks in Higher Plants. Nature Reviews Genetics. 8(3): 217-230.

Shin, K. S., Murthy, H. N., Heo, J. W., Hahn, E. J., & Paek, K. Y. 2008. The Effect of Light Quality on the Growth and Development Of In Vitro Cultured Doritaenopsis Plants. Acta Physiologiae Plantarum. 30(3): 339-343.

Gupta, S. D., & Jatothu, B. 2013. Fundamentals and Applications of Light-Emitting Diodes (Leds) In In Vitro Plant Growth and Morphogenesis. Plant Biotechnology Reports. 7(3): 211-220.

Brown, C. S., Schuerger, A. C., & Sager, J. C. 1995. Growth and Photomorphogenesis of Pepper under Red Light-Emitting Diodes with Supplemental Blue or Far-Red Lighting. Journal of American Society of Horticulture Science. 120: 808-813.

Yen, H. C., Liou, S. Y., & Hsieh, Y. C. 2011. Tissue Culture of Anoectochilus Formosanus Hayata by Combining Fluorescent Lamp and R-Leds as Light Sources. In Industrial Electronics and Applications (ICIEA). 2011 6th IEEE Conference. IEEE. 312-315

Chen, P. 2014. Chlorophyll and other photosentives. In: LED grow lights ,absorption spectrum for plant photosensitive pigments, http://www.ledgrowlightshq.co. uk/chlorophyll-plant-pigments/〉; 2014[accessed16.11.15].

Kim, C. K., Oh, J. Y., Jee, S. O. and Chung, J. D. 2003. In vitro Micropropagation of Rosa Hybrida L. J. Plant Biotechnology. 5(2): 115-119

Lee, S. W., Seo, J. M., Lee, M. K., Chun, J. H., Antonisamy, P., Arasu, M. V. & Kim, S. J. 2014. Influence of Different LED Lamps On The Production Of Phenolic Compounds In Common And Tartary Buckwheat Sprouts. Industrial Crops and Products. 54: 320-326.

Singh, D., Basu, C., Meinhardt-Wollweber, M., & Roth, B. 2015. LEDs for Energy Efficient Greenhouse Lighting. Renewable and Sustainable Energy Reviews. 49: 139-147.

Jayakumar, M., Amudha, P., & Kulandaivelu, G. 2004. Effect of Low Doses of UV-A and UV-B Radiation on Photosynthetic Activities Inphaseolus Mungo L. Journal of Plant Biology. 47(2): 105-110.

Lin, K. H., Huang, M. Y., Huang, W. D., Hsu, M. H., Yang, Z. W., & Yang, C. M. 2013. The Effects of Red, Blue, and White Light-Emitting Diodes on the Growth, Development, and Edible Quality of Hydroponically Grown Lettuce (Lactuca Sativa L. Var. Capitata). Scientia Horticulturae. 150: 86-91.

Kim, C. K., Oh, J. Y., Jee, S. O. and Chung, J. D. 2003. In Vitro Micropropagation of Rosa Hybrida L. J. Plant Biotechnology. 5(2): 115-119.

Jung, E. S., Lee, S., Lim, S. H., Ha, S. H., Liu, K. H., & Lee, C. H. 2013. Metabolite Profiling Of The Short-Term Responses Of Rice Leaves (Oryza Sativa Cv. Ilmi) Cultivated Under Different LED Lights And Its Correlations With Antioxidant Activities. Plant Science. 210: 61-69.

Xu, J., Liu, B., Liu, X., Gao, H., & Deng, X. 2011. Carotenoids Synthesized In Citrus Callus of Different Genotypes. Acta physiologiae plantarum. 33(3): 745-753.

Heo, J., Lee, C., Chakrabarty, D., & Paek, K. 2002. Growth Responses of Marigold and Salvia Bedding Plants As Affected By Monochromic or Mixture Radiation Provided By a Light-Emitting Diode (LED). Plant Growth Regulation. 38(3): 225-230.

Li, H., Tang, C., & Xu, Z. 2013. The Effects of Different Light Qualities on Rapeseed (Brassica Napus L.) Plantlet Growth and Morphogenesis in Vitro. Scientia Horticulturae. 150: 117-124.

Yorio, N. C., Goins, G. D., Kagie, H. R., Wheeler, R. M., Sager, J. C. 2001. Improving Spinach, Radish And Lettuce Growth Under Red Light Emitting Diodes (Leds) With Blue Light Supplementation. Hort Science. 36: 380-3.

Jo, E. A., Tewari, R. K., Hahn, E. J., & Paek, K. Y. 2008. Effect of Photoperiod and Light Intensity on In Vitro Propagation of Alocasia Amazonica. Plant Biotechnology Reports. 2(3): 207-212.

Yeh, N., Ding, T. J., & Yeh, P. 2015. Light-Emitting Diodes׳ Light Qualities and Their Corresponding Scientific Applications. Renewable and Sustainable Energy Reviews. 51: 55-61.

Khattak, A.M., Pearson, S, 2005. Light Quality and Temperature Effects on Antirrhinum Growth and Development. J. Zhej. Univ. Sci. 6B: 119-124.

Khattak, A. M., Pearson, S. 2006. Spectral Filters and Temperature Effects on the Growth and Development of Chrysanthemums under Low Light Integral. Plant Growth Regul. 49: 61-68

Li, Q., Kubota, C. 2009. Effects of Supplemental Light Quality on Growth and Phytochemicals of Baby Leaf Lettuce. Environ. Exp. Bot. 67: 59-64.

Shin, K. S., Murthy, H. N., Heo, J. W., Hahn, E. J. H., Paek, K. Y. 2008.The Effect of Light Quality on The Growth And Development Of In Vitro Cultured Doritaenopsis Plants. Acta Physiol. Plant. 30: 339-343.

Li, H., Xu, Z., & Tang, C. 2010. Effect of Light-Emitting Diodes on Growth and Morphogenesis of Upland Cotton (Gossypium Hirsutum L.) Plantlets in Vitro. Plant Cell, Tissue and Organ Culture (PCTOC). 103(2): 155-163.

Macedo, A. F., Leal-Costa, M. V., Tavares, E. S., Lage, C. L. S., & Esquibel, M. A. 2011. The Effect of Light Quality on Leaf Production and Development of In Vitro-Cultured Plants of Alternanthera Brasiliana Kuntze. Environmental And Experimental Botany. 70(1): 43-50.

Antonopolou, C., Dimassi, F., Therios, I., Chatzissavvidis, C. 2004. The Influence Ofradiation Quality on the In Vitro Rooting and Nutrient Concentrations of Peach Rootstock. Biol. Plant. 48: 549-553.

Hunter, D. C., Burritt, D. J. 2004. Light Quality Influences Adventitious Shoot Production from Cotyledon Explants Of Lettuce (Lactuca Sativa). In Vitro Cell Dev. Biol. Plants. 40: 215-220.

Lin, Y., Li, J., Li, B., He, T., & Chun, Z. 2011. Effects Of Light Quality On Growth And Development Of Protocorm-Like Bodies of Dendrobium Officinale in Vitro.Plant Cell. Tissue and Organ Culture (PCTOC). 105(3): 329-335.

Budiarto, K. 2010. Spectral Quality Affects Morphogenesis on Anthurium Plantlet during In Vitro Culture. Agrivita. 32: 234–240

Xu, Z. G., Cui, J., Di, X. R. 2009. Effects of Different Spectral Energy Distribution on Tissue Culture of Oncidium in Vitro. Int J Autom Comput. 31: 45-50.

Li. H., Tang, C., Xu, Z., Liu, X., Han, X. 2012. Effects of Different Light Source Son the Growth of Non-Heading Chinese cabbage (Brassicacampestris L.). J AgricSci. 4: 262-73.

Lefsrud, M. G., Kopsell, D. A., Sams, C. E. 2008. Irradiance From Distinct Wavelength Light- Emitting Diodes Affect Secondary Metabolites In Kale. HortScience. 43: 2243-4.

Chen, X. L., Guo, W. Z., Xue, X. Z., Wang, L. C., & Qiao, X. J. 2014. Growth and Quality Responses of ‘Green Oak Leaf’lettuce As Affected By Monochromic or Mixed Radiation Provided By Fluorescent Lamp (FL) and Light-Emitting Diode (LED). Scientia Horticulturae. 172: 168-175.

Nhut, D. T., Don, N. T., & Tanaka, M. 2007. Light-Emitting Diodes as an Effective Lighting Source for In Vitro Banana Culture. In Protocols for Micropropagation of Woody Trees and Fruits.. Springer Netherlands. 527-541

Downloads

Published

2016-06-13

How to Cite

FLUORESCENT LIGHT (FL), RED LED AND BLUE LED SPECTRUMS EFFECTS ON IN VITRO SHOOTS MULTIPLICATION. (2016). Jurnal Teknologi, 78(6-6). https://doi.org/10.11113/jt.v78.9032