SEQUENCE ANALYSIS OF THE CYTOCHROME OXIDASE I GENE IN AEDES ALBOPICTUS ISOLATED FROM TAMAN BUKIT KINRARA AND PJS7, SELANGOR
DOI:
https://doi.org/10.11113/jt.v78.9052Keywords:
Aedes albopictus, cytochrome oxidase 1 gene, genetic diversity, phylogenetic analysisAbstract
Aedes albopictus is one of the most invasive mosquitoes in the world that harbors and can transmit many arboviruses, most notably dengue and chikungunya virus. In recent time, Ae. aegypti has gained more attention during dengue outbreaks compared to its counter parts, obscuring the role of Ae. albopictus as a vector. Moreover, existing data regarding Ae. albopictus is also currently limited in Malaysia. Hence, the present study was conducted to determine the genetic diversity of Ae. albopictus using molecular techniques from two dengue infested areas in Subang Jaya, Selangor, namely Taman Bukit Kinrara (TBK) and PJS7. Cytochrome oxidase 1 (CO1) gene from field collected mosquitoes were analyzed and compared to the USM laboratory strain (F135) together with sequences from the GenBank. Results from this study revealed that the field collected mosquitoes from TBK and PJS7 are genetically similar with each other. However, the samples exhibited polymorphism with the laboratory strain by 47 variable nucleotide sites. Our local samples are related with the  Ae. albopictus populations from India, probably due to its migration across these two regions via several human activities. This study shows that the CO1 gene is a valuable marker for the detection of Ae. albopictus and can be utilized to study its worldwide geographical distribution. Further analysis is strongly recommended using larger sample size and different localities to validate and substantiate our findings.
References
WHO. 2013. Dengue Situation Updates. WPRO | WHO Western Pacific Region. [Online]. From http://www.wpro.who.int/emerging_diseases/DengueSituationUpdates/en/#. [Accessed on November 13, 2013].
Nazni, W., H. Lee, H. Dayang, and A. Azahari. 2009. Cross-mating Between Malaysian Strains of Aedes aegypti and Aedes albopictus in the Laboratory. Southeast Asian Journal of Tropical Medicine and Public Health. 40(1): 40-46.
Baak-Baak, C. M., A. D. RodrÃguez-, J. E. GarcÃa-Rejón, S. RÃos-Delgado, and J. L. Torres-Estrada. 2013. Development and Laboratory Evaluation of Chemically-Based Baited Ovitrap for the Monitoring of Aedes aegypti. Journal of Vector Ecology. 38(1): 175-181.
Dieng, H., R. G. M. Saifur, A. A. Hassan, M. R. C. Salmah, M. Boots, T. Satho, Z. Jaal, and S. Abu Bakar. 2010. Indoor Breeding of Aedes albopictus in Northern Peninsular Malaysia and Its Potential Epidemiological Implications. PLoS ONE. 5(7): e11790. doi:10.1371/journal.pone.0011790.
Lee, H. L., A. Rohani, M. S. Khadri, W. A. Nazni, H. Rozilawati, A. H. Nurulhusna, A. H. Nor Afizah, A. Roziah, R. Rosilawati, and C. H. Teh. 2015. Dengue Vector Control in Malaysia-Challenges and Recent Advances. International Medical Journal Malaysia. 14(1): 11-16.
Paupy, C., H. Delatte, L. Bagny, V. Corbel, and D. Fontenille. 2009. Aedes albopictus, An Arbovirus Vector: From the Darkness to the Light. Microbes and Infection. 11(14-15): 1177-1185.
Scholte, E., F. Jacobs, Y. Linton, E. Dijkstra, J. Fransen, and W. Takken. 2007. First Record of Aedes (Stegomyia) albopictus in the Netherlands. Journal of the European Mosquito Control Association. 22: 5-9.
Becker, N., M. Geier, C. Balczun, U. Bradersen, K. Huber, E. Kiel, A. Krüger, R. Lühken, C. Orendt, A. Plenge-Bönig, A. Rose, G. A. Schaub, and E. Tannich. 2013. Repeated Introduction of Aedes albopictus Into Germany. July to October 2012. Parasitology Research. 112(4): 1787-1790.
Dom, N. C., A. A. Hassan, Z. A. Latif and R. Ismail. 2013. Generating Temporal Model Using Climate Variables for the Prediction of Dengue Cases in Subang Jaya, Malaysia. Asian Pacific Journal of Tropical Disease. 3(5): 352-361.
Gerberg, E. J. 1970. Manual for Mosquito Rearing and Experimental Techniques, Bulletin No. 5. Selma, California: American Mosquito Control Association. Inc.
Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The CLUSTAL_X Windows Interface: Flexible Strategies for Multiple Sequence Alignment Aided by Quality Analysis Tools. Nucleic Acids Research. 25(24): 4876-4882.
Tamura, K., G. Stecher, G., Peterson, D., Filipski, A., and Kumar, S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution. 30: 2725-29.
Tamura, K. 1992. Estimation of the Number of Nucleotide Substitutions When There Are Strong Transition-Transversion and G+C Content Biases. Molecular Biology and Evolution. 9(4): 678-687.
Kamgang, B., C. Brengues, D. Fontenille, F. Njiokou, F. Simard, and C. Paupy. 2011. Genetic Structure of the Tiger Mosquito, Aedes albopictus, in Cameroon (Central Africa). Plos One. 6(5): 1-10.
Zhong, D., E. Lo, R. Hu, M. E. Metzger, R. Cummings, M. Bonizzoni, K. K. Fujioka, T. E. Sorvillo, E. Teresa, S. Kluh, S. P. Healy, C. Fredregill, V. L. Kramer, X. Chen, and G. Yan. 2013. Genetic Analysis of Invasive Aedes albopictus Populations in Los Angeles County, California and Its Potential Public Health Impact. Plos One. 8(7): 1-9.
Lunt, D. H., D. X. Zhang, J. M. Szymura, and G. M. Hewitt. 1996. The Insect Cytochrome Oxidase I Gene: Evolutionary Patterns and Conserved Primers for Phylogenetic Studies. Insect Molecular Biology. 5(3): 153-165.
Futami, K., A. Valderrama, M. Baldi, N. Minakawa, R. M. Rodriguez, and L. F. Chaves. 2015. New and Common Haplotypes Shape Genetic Diversity in Asian Tiger Mosquito Populations from Costa Rica and Panama. Journal of Economic Entomology. 108(2): 761-768.
Gibson, J. F., S. Kelso, M. D. Jackson, J. H. Kits, G. F. G. Miranda, and J. H. Skevington. 2011. Diptera-Specific Polymerase Chain Reaction Amplification Primers of Use in Molecular Phylogenetic Research. Annals of the Entomological Society of America. 104(5): 976-997.
Usmani-brown, A. S., L. Cohnstaedt, and L. E. Munstermann. 2009. Population Genetics of Aedes albopictus (Diptera : Culicidae) Invading Populations, using Mitochondrial Nicotinamide Adenine Dinucleotide Dehydrogenase Subunit 5 Sequences. Annal of the Entomological Society of America. 102(1): 144-150.
Armbruster, P, W. E. Damsky Jr, R. Giordano, J. Birungi, L. E. Munstermann, and J. E. Conn. 2003. Infection of New and Old-World Aedes albopictus (Diptera: Culicidae) by the Intracellular Parasite Wolbachia: Implications for Host Mitochondrial DNA Evolution. Journal of Medical Entomology. 40(3): 356-360.
Shaikevich, E. V., and I. A. Zakharov. 2010. Polymorphism of Mitochondrial CO1 and Nuclear Ribosomal ITS2 in the Culex pipiens Complex and in Culex torrentium (Diptera: Culicidae). Comperative Cytogenetic. 4(2): 161-174
Bosio, C. F., L. C. Harrington, J. W. Jones, R. Sithiprasasna, D. E. Norris, and T. W. Scott. 2005. Genetic Structure of Aedes aegypti Populations in Thailand using Mitochondrial DNA. The American Journal of Tropical Medicine and Hygiene. 72(4): 434-442.
Bonizzoni, M., G. Gasperi, X. Chen, and A. A. James. 2013. The Invasive Mosquito Species Aedes albopictus: Current Knowledge and Future Perspectives. Trends in Parasitology. 29(9): 460-468.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.