THE EVOLUTION OF RESEARCH AND DEVELOPMENT ON COCHLEAR BIOMODEL

Authors

  • Thailis Bounya Ngelayang Faculty of Electronics and Computer Engineering (FKEKK), Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Low Yin Fen Faculty of Electronics and Computer Engineering (FKEKK), Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Rhonira Latif Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
  • Burhanuddin Yeop Majlis Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia

DOI:

https://doi.org/10.11113/jt.v78.9059

Keywords:

Artificial Basilar Membrane, Cochlear Biomodel, Human Auditory System, Microelectromechanical Systems (MEMS)

Abstract

The research and development of the cochlear biomodels have initially started over a century ago. Since then, various types of approach have been implemented in trials to perfectly replicate the nature of the human auditory system. The evolution started with the implementation of mechanical elements into the cochlear biomodel operating in air and fluidic surrounding. However, due to the huge size of the mechanical cochlear biomodel, the microelectromechanical systems (MEMS) has been implemented in order to attain a life-sized cochlear biomodel. Researchers have looked into the possibilities of fabricating the MEMS cochlear biomodel in air and fluidic mediums. In this paper, the mechanical and MEMS cochlear biomodel implementations will be reviewed. The key part in modelling the cochlea for human auditory system is to mimic closely its nature and capabilities in terms of the geometrical design, material properties and sensory performance. 

References

Alexander Ellis, Helmholtz, and Hermann von. 1863. On the Sensations of Tone as a Physiological basis of the Theory of Music. New York: Dover Publications.

Dallos, P. 1996. Overview: Cochlear Neurobiology in The Cochlea. New York: Springer-Verlag.

Kaskel, A., Hummer, P. J., and Daniel, L. 1999. Biology: An Everyday Experience. New York: Glencoe/McGraw-Hill.

Lyshevski, S. E. 2007. Mems And Nems: Systems, Devices And Structures. Boca Raton: CRC press.

Chan Keen Leong. 2004. Biomimetic Sensor Based On The Cochlea. Singapore: National University of Singapore.

Bowen and Kwabena Boahen. 2003. A Linear Cochlea Model With Bi-Directional Coupling. USA: University of Pennsylvania.

Bryan, S. Joyce and Pablo, A. Tarazaga. 2014. Mimicking The Cochlear Amplifier in a Cantilever Beam Using Nonlinear Velocity Feedback Control. Smart Material and Structures. 23: 075019.

Martignoli, S., Van Der Vyver J. J., Kern, A., Cwate, Y. and Stoop, R. 2007. Analog Electronic Cochlea With Mammalian Hearing Characteristics. Applied Physics Letter. 9: 095018.

Camaler, S., Duke, T., Julicher, F. and Jacques, P. 2000. Auditory Sensitivity Provided by Self-Tuned Critical Oscillation of Hair Cells. Proc. Natl. Acad. Sci. USA. 97: 3183-8.

Egufluz, V. M., Ospeck, M., Choe, Y., Hudspeth, A. J. and Magnasco, M. O. 2000. Essential Nonlinearities in Hearing. Physics Review Letter. 84: 5232-5.

Békésy, von G. 1960. Experiments in Hearing. New York: McGraw Hill.

H. D. C. R. S. Elizabeth S. Olson. 2012. Von Békésy and cochlear mechanics, Good Vibrations. A Special Issue To Honor The 50 Year Jubilee For Georg Von Békésy´S Nobel Prize The Physical Mechanisms Of Stimulation Within The Cochlea. 293: 31-43.

Shuangqin, Liu, Dauglas, A. Gauthier, Ethan Mandelup and Robert, D. White. 2008. Experimental Investigation of a Hydromechanical Scale Model of The Gerbil Cochlea. ASME 2008 International Mechanical Engineering Congress and Exposition. Boston, USA. 67778.

Duke, T. and Julicher, F. 2003. Active Travelling Waves in The Cochlea. Physical Review Letters. 90(15): 158101-1.

Zerlin, S. 1969. Travelling-wave Velocity in the Human Cochlea. Journal of the Acoustic Society of America. 46(4): 1011-15.

D. Haronian and N. C. MacDonald. 1995. A Microelectromechanics Based Artificial Cochlea (MEMBAC). Proc. Int. Solid-State Sensors Actuators Conf. 2: 0-3.

D. Haronian, and N. C. MacDonald. 1996. A Micromechanics-Based Frequency-Signature Sensor. Sens. Actuators, A. 53: 288-298.

K. Tanaka, M. Abe, and S. Ando. 1998. A Novel Mechanical Cochlea ‘Fishbone’ With Dual Sensor/Actuator Characteristics. IEEE/ASME Trans. Mechatronics. 3(2): 98-105.

M. Abe, S. Ando, K. Tanaka. 1997. Fishbone Architecture: An Equivalent Mechanical Model of Cochlea and Its Application to Sensors and Actuators. Int. Conf. Solid-state Sensors Actuators. Chicago. 1027-1030.

R. Latif, E. Mastropaolo, A. Bunting, T. J. Koickal, M. Newton, A. Hamilton, L. Smith, and R. Cheung. 2010. Microelectromechanical systems (MEMS) for biomimetical applications. 54th Int. Conf. Electron, Ion and Photon Beam Technology and Nanofabrication. Anchorage. 28(6).

R. Latif. 2012. Microelectromechanical Systems for Niomimetical Application. Scotland: University of Edinburgh.

H. Tanujaya, H. Shintaku, and D. Kitagawa. 2013. Experimental and Analytical Study Approach of Artificial Basilar Membrane Prototype (ABMP). Journal Engineering Technology Science. 45(1): 61-72.

M. Wittbrodt, S. Puria and C. R. Steele. 2006. Developing a Physical Model of The Human Cochlea Using Micro-Fabrication Methods. Audiology and Neurotology. 11(2): 104-112.

R. D. White and K. Grosh. 2005. Design And Characterization Of MEMS Piezoresistive Cochlear-Like Acoustic Sensor. ASME International Mechanical Engineering Congress And Exposition. New Orleans, LA Acad. Sci. U.S.A. 102: 1296-1301.

R. D. White and K. Grosh. 2002. A Micromachined Cochlear-Like Acoustic Sensor. Proceedings of SPIE, Smart Structures and Materials 2002: Smart Electronics, MEMS, and Nanotechnology. 4700: 89-100.

Fangyi Chen, Howard I. Cohen, Thomas G. Bifano, Jason Castle, Jeffrey Fortin, Christopher Kapusta, Davis C. Mountain, Aleks Zosuls and Allyn E. Hubbard. 2006. A Hydromechanical Biomimetic Cochlea: Experiments and Models. Journal of the Acoustic Society of America. 119(1): 394-405.

T. P. Lechner. 1993. A Hydromechanical Model Of The Cochlea With Nonlinear Feedback Using PVF2 Bending Transducer. Hear. Res. 66: 202-212.

Hannes Luling, Jan Moritz P. Franosch and J. Leo van Hemmen. 2010. A Two-Dimensional Cochlear fluid Model Based On Conformal Mapping. Journal of the Acoustic Society of America. 128(6): 3577-3584.

O. F. Ranke. 1950. Theory of Operation of the Cochlea: A Contribution to the Hydrodynamics of the Cochlea. Journal of the Acoustic Society of America. 22: 772-777.

Downloads

Published

2016-06-13

Issue

Section

Science and Engineering

How to Cite

THE EVOLUTION OF RESEARCH AND DEVELOPMENT ON COCHLEAR BIOMODEL. (2016). Jurnal Teknologi, 78(6-8). https://doi.org/10.11113/jt.v78.9059