IN VIVO ASSESSMENT ON ACUTE TOXICITY OF IRON OXIDE NANOPARTICLES WITH DIFFERENT COATINGS

Authors

  • Nur Amirah Mohd Nor Department of Medical Laboratory Technology, Faculty of Health Sciences, Universiti Teknologi MARA, UiTM Puncak Alam, 42300 Selangor, Malaysia
  • Rasdin Ridwan Department of Medical Laboratory Technology, Faculty of Health Sciences, Universiti Teknologi MARA, UiTM Puncak Alam, 42300 Selangor, Malaysia
  • Nornaizie Che Nordin Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Malaysia
  • Hairil Rashmizal Abdul Razak Department of Medical Imaging, Faculty of Health Sciences, Universiti Teknologi MARA, UiTM Puncak Alam, 42300 Selangor, Malaysia
  • Wan Mazlina Md Saad Department of Medical Laboratory Technology, Faculty of Health Sciences, Universiti Teknologi MARA, UiTM Puncak Alam, 42300 Selangor, Malaysia

DOI:

https://doi.org/10.11113/jt.v78.9080

Keywords:

Nanoparticulate, phagocytosed, SiPEG

Abstract

Engineered nanoparticles have been extensively explored in various biomedical settings including nanoparticulate imaging agents due to its promising benefits to mankind. Iodine-intolerance patients have caused alarming concerns in searching new contrast media with lower toxicity effect. However, proper potential mechanism of nanoparticles has yet to be fully established despite its early acceptance and emerging usage. By using animal model system, our aim is to assess acute toxicity of 14 nm iron oxide nanoparticles (IONPs) coated with citric acid, nitric acid, perchloric acid and silane-polyethylene glycol (SiPEG). Eighteen male Wistar Rats were used in order to explore the underlying toxicity of IONPs in liver tissues after 24 hours. Hydroxyl radicals (˙OH) were elucidated by using reactive oxygen species (ROS) production assay and western blotting for the presence of p53 protein expression. The results revealed SiPEG coated IONPs have lower ROS production and lower expression of p53, however no statistical significant were observed. It can be hypothesized that SiPEG has blood-pooling contrast agent potential due to longer circulation period in blood. While, IONPs not coated with SiPEG tend to be phagocytosed by mononuclear phagocyte system and released Fe2+ ions initiative to acute cellular toxicity. The outcomes highlighted that administration of SiPEG coated IONPs believed to be a safer radiographic contrast media.

References

Gupta, A. K. and M. Gupta. 2005. Synthesis and Surface Engineering of Iron Oxide Nanoparticles for Biomedical Applications. Biomaterials. 26(18): 3995-4021.

Mohamed, M. I., M. K. A. Mohammad, H. R., Abdul Razak, and W. M. Md Saad. 2015. Nanotoxic Profiling of Novel Iron Oxide Nanoparticles Functionalized with Perchloric Acid and SiPEG as a Radiographic Contrast Medium. Biomed Research Internatinal. 1-7.

Wilczewska, A. Z., K. Niemirowicz, K. H. Markiewicz, and H. Car. 2012. Nanoparticles as Drug Delivery Systems. Pharmacological Reports. 64(5): 1020-1037.

Szalay, B., E. Tátrai, G. Nyírő, T. Vezér, and G. Dura. 2012. Potential Toxic Effects of Iron Oxide Nanoparticles in In Vivo and In Vitro Experiments. Journal of Applied Toxicology. 32(6): 446-53.

Malvindi, M. A., V. De Matteis, A. Galeone, V. Brunetti, G. C. Anyfantis, A. Athanassiou, R. Cingolani, and P. P. Pompa. 2014. Toxicity Assessment of Silica Coated Iron Oxide Nanoparticles and Biocompatibility Improvement by Surface Engineering. PLoS One. 9(1): e85835.

Kim, D. K., Y. Zhang, W. Voit, K. V. Rao, and M. Muhammed. Jan. 2001. Synthesis and Characterization of Surfactant-coated Superparamagnetic Monodispersed Iron Oxide Nanoparticles. Journal of Magnetism and Magnetic Materials. 225(1-2): 30-36.

Li, L., W. Jiang, K. Luo, H. Song, F. Lan, Y. Wu, and Z. Gu. 2013. Superparamagnetic Iron Oxide Nanoparticles as MRI Contrast Agents for Non-Invasive Stem Cell Labeling And Tracking. Theranostics. 3(8): 595-615.

Singh, N., G. J. S. Jenkins, R. Asadi, and S. H. Doak. 2010. Potential Toxicity of Superparamagnetic Iron Oxide Nanoparticles (SPION). Nano Reviews. 1: 1-15.

Mohamad Nor, N., K. Abdul Razak, S. C. Tan, and R. Noordin. 2012. Properties Of Surface Functionalized Iron Oxide Nanoparticles (Ferrofluid) Conjugated Antibody For Lateral Flow Immunoassay Application. Journal of Alloys and Compounds. 538: 100-106.

Baumann, J., J. Köser, D. Arndt, and J. Filser. 2014. The Coating Makes the Difference: Acute Effects of Iron Oxide Nanoparticles on Daphnia Magna. Science of the Total Environment. 484: 176-184.

Sablina, A. A., A. V Budanov, G. V Ilyinskaya, L. S. Agapova, J. E. Kravchenko, and P. M. Chumakov. 2005. The Antioxidant Function of the P53 Tumor Suppressor. Nature Medicine. 11(12): 1306-1313.

Setyawati, M. I., C. Y. Tay, and D. T. Leong. Dec. 2013. Effect of Zinc Oxide Nanomaterials-Induced Oxidative Stress on the P53 Pathway. Biomaterials. 34(38): 10133-10142.

Van Der Deen, M., H. Taipaleenmäki, Y. Zhang, N. M. Teplyuk, A. Gupta, S. Cinghu, K. Shogren, A. Maran, M. J. Yaszemski, L. Ling, S. M. Cool, D. T. Leong, C. Dierkes, J. Zustin, M. Salto-Tellez, Y. Ito, S. C. Bae, M. Zielenska, J. A. Squire, J. B. Lian, J. L. Stein, G. P. Zambetti, S. N. Jones, M. Galindo, E. Hesse, G. S. Stein, and A. J. Van Wijnen. 2013. MicroRNA-34c Inversely Couples the Biological Functions of the Runt-Related Transcription Factor RUNX2 and the Tumor Suppressor P53 in Osteosarcoma. The Journal of Biological Chemistry. 288: 21307-21319.

AshaRani, P. V., G. L. K. Mun, M. P. Hande, and S. Valiyaveettil. 2009. Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells. ACS Nano. 3(2): 279-290.

Dragoni, S., G. Franco, M. Regoli, M. Bracciali, V. Morandi, G. Sgaragli, E. Bertelli, and M. Valoti. 2012. Gold Nanoparticles Uptake and Cytotoxicity Assessed on Rat Liver Precision-Cut Slices. Toxicological Sciences. 128: 186-197.

Pan, Y., S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, and W. Jahnen-Dechent. 2007. Size-Dependent Cytotoxicity of Gold Nanoparticles. Small. 3: 1941-1949.

Miethling-Graff, R., R. Rumpker, M. Richter, T. Verano-Braga, F. Kjeldsen, J. Brewer, J. Hoyland, H.-G. Rubahn, and H. Erdmann. 2014. Exposure to Silver Nanoparticles Induces Size- and Dose-Dependent Oxidative Stress and Cytotoxicity in Human Colon Carcinoma Cells. Toxicology In Vitro. 28(7): 1280-1289.

Toyokuni, S. 2009. Role of Iron in Carcinogenesis: Cancer as a Ferrotoxic Disease. Cancer Science. 100(1): 9-16.

Mahmoudi, M., A. Simchi, A. S. Milani, and P. Stroeve. 2009. Cell Toxicity of Superparamagnetic Iron Oxide Nanoparticles. Journal of Colloid and Interface Science. 336(2): 510-518.

Chen, H., A. Dorrigan, S. Saad, D. J. Hare, M. B. Cortie, and S. M. Valenzuela. 2013. In Vivo Study of Spherical Gold Nanoparticles: Inflammatory Effects and Distribution in Mice. PLoS One. 8.

Parveen, S. and S. K. Sahoo. 2011. Long Circulating Chitosan/PEG Blended PLGA Nanoparticle for Tumor Drug Delivery. European Journal of Pharmacology. 670(2-3): 372-383.

Cho, W.-S., M. Cho, J. Jeong, M. Choi, H.-Y. Cho, B. S. Han, S. H. Kim, H. O. Kim, Y. T. Lim, B. H. Chung, and J. Jeong. 2009. Acute Toxicity and Pharmacokinetics of 13 nm-sized PEG-Coated Gold Nanoparticles. Toxicology and Applied Pharmacology. 236(1): 16-24.

Albanese, A., P. S. Tang, and W. C. W. Chan. Jan. 2012. The Effect Of Nanoparticle Size, Shape, and Surface Chemistry on Biological Systems. Annual Review of Biomedical Engineering. 14: 1-16.

Mohanraj, V. J. and Y. Chen. 2007 Nanoparticles - A Review. Tropical Journal of Pharmaceutical Research. 5.

Yu, M., S. Huang, K. J. Yu, and A. M. Clyne. Jan. 2012. Dextran and Polymer Polyethylene Glycol (PEG) Coating Reduce Both 5 and 30 nm Iron Oxide Nanoparticle Cytotoxicity in 2D and 3D Cell Culture. International Journal of Melecular Sciences. 13(5): 5554-5570.

Downloads

Published

2016-06-15

How to Cite

IN VIVO ASSESSMENT ON ACUTE TOXICITY OF IRON OXIDE NANOPARTICLES WITH DIFFERENT COATINGS. (2016). Jurnal Teknologi, 78(6-7). https://doi.org/10.11113/jt.v78.9080